894
R. Villano et al. / Tetrahedron Letters 48 (2007) 891–895
Notz, W., ; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res.
2004, 37, 580–591; (d) Armstrong, A. Angew. Chem., Int.
Ed. 2004, 43, 1460–1462; (e) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2004, 43, 5138–5175; Special issue
dedicated to organocatalysis: (f) Houk, K. N.; List, B.
Acc. Chem. Res. 2004, 37.
O
O
7. (a) Connon, S. J. Chem. Eur. J. 2006, 12, 5418–5427; (b)
Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal.
2006, 348, 999–1010; (c) Terada, M.; Machioka, K.;
Sorimachi, K. Angew. Chem., Int. Ed. 2006, 45, 2254–
2257; (d) Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L.
Angew. Chem., Int. Ed. 2005, 44, 1758–1763; (e) Gondi, V.
B.; Gravel, M.; Rawal, V. H. Org. Lett. 2005, 7, 5657–
5660; (f) Unni, A. K.; Takenaka, N.; Yamamoto, H.;
Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336–1337; (g)
Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062–2064;
(h) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H.
MeO
7
Figure 2.
´
Nature 2003, 424, 146; (i) Domingo, L. R.; Andres, J. J.
Org. Chem. 2003, 68, 8662–8668; (j) Huang, Y.; Rawal, V.
H. J. Am. Chem. Soc. 2002, 124, 9662–9663.
8. Du, H.; Zhao, D.; Ding, K. Chem. Eur. J. 2004, 10, 5964–
5970.
9. McGilvra, J. D.; Unni, A. K.; Modi, K.; Rawal, V. H.
Angew. Chem., Int. Ed. 2006, 45, 6130–6133.
10. General procedure for the preparation of compounds 3
(Table 2): In a dry vial (S,S)-5a (0.05 mmol), aldehyde
(0.5 mmol) and diene 1 (0.65 mmol) were added. The
resulting mixture was stirred for 24 h at room tempera-
ture, then dry THF (2 ml) was added. This solution was
cooled at ꢀ78 °C and TFA (0.2 ml) was added dropwise,
then it was permitted to warm to room temperature and
after completion of the desilylation reaction, it was
neutralized by addition of saturated aq NaHCO3. The
reaction mixture was extracted with AcOEt and the
combined organic phase was dried (MgSO4) and concen-
trated. The residue was purified by non-flash chromato-
graphy (CHCl3/Et2O 9/1) to give products 3.
promising level of enantioselectivity. The electronic
effects of the substituents on the aromatic nucleus played
a determining role on the reactivity of the examined sub-
strates, so that in the case of electron-poor aldehydes a
competing asymmetric HDA reaction, leading to pyrone
derivatives 6, was found to take place in comparable (or
higher) yields and ees with respect to the vinylogous
aldol reaction. Further studies, in order to rationalize
the product distribution in the case of electron-poor
aldehydes as well as to enlarge the substrate generality
of this reaction, are in progress.
Acknowledgement
We are grateful to MIUR for financial support.
11. All new compounds were fully characterized on the basis
1
of IR, H NMR, 13C NMR and mass spectroscopic data.
References and notes
Spectral data of selected compounds: Compound 3b:12
enantiomeric excess was determined by HPLC (Chiralpak
AD), hexane–EtOH 95:5 + 0.1% TFA, 1 ml/min major
enantiomer (R) tR = 23.3, minor enantiomer (S) tR = 30.3;
Compound 3c:12 enantiomeric excess was determined by
HPLC (Chiralpak AD), hexane–EtOH 95:5 + 0.1% TFA,
1 ml/min, major enantiomer (R) tR = 29.4, minor enan-
tiomer (S) tR = 42.3; Compound 3e:14 enantiomeric excess
was determined by HPLC (Chiralpak AD), hexane–EtOH
95:5 + 0.1% TFA, 1 ml/min minor enantiomer tR = 21.2,
major enantiomer tR = 23.5; Compound 3g:12 enantio-
meric excess was determined by HPLC (Chiralcel OD),
hexane–iPrOH 90:10, 0.8 ml/min, minor enantiomer (S)
tR = 48.0, major enantiomer (R) tR = 53.0; Compound 6g:
yellow oil, m/z: 250 [M+H]+, 272 [M+Na]+; IR (KBr,
1. Chan, T. H.; Brownbridge, P. J. Chem. Soc., Chem.
Commun. 1979, 578–579.
2. Savard, J.; Brassard, P. Tetrahedron Lett. 1979, 20, 4911–
4914.
3. (a) Midland, M. M.; Koops, R. W. J. Org. Chem. 1990,
55, 5058–5065; (b) Midland, M. M.; Koops, R. W. J. Org.
Chem. 1990, 55, 4647–4650; (c) Midland, M. M.; Afonso,
M. M. J. Am. Chem. Soc. 1989, 111, 4368–4371; (d)
Midland, M. M.; Graham, R. S. J. Am. Chem. Soc. 1984,
106, 4294–4296.
4. (a) Fan, Q.; Lin, L.; Liu, J.; Huang, Y.; Feng, X. Eur. J.
Org. Chem. 2005, 16, 3542–3552; (b) Fan, Q.; Lin, L.; Liu,
J.; Huang, Y.; Feng, X.; Zhang, G. Org. Lett. 2004, 6,
2185–2188.
5. (a) Villano, R.; Acocella, M. R.; De Rosa, M.; Soriente,
A.; Scettri, A. Tetrahedron: Asymmetry 2004, 15, 2421–
2424; (b) Soriente, A.; De Rosa, M.; Villano, R.; Scettri,
A. Curr. Org. Chem. 2004, 8, 993–1007; (c) Villano, R.; De
Rosa, M.; Salerno, C.; Soriente, A.; Scettri, A. Tetra-
hedron: Asymmetry 2002, 13, 1949–1952; (d) Soriente, A.;
De Rosa, M.; Stanzione, M.; Villano, R.; Scettri, A.
Tetrahedron: Asymmetry 2001, 12, 959–963; (e) Soriente,
A.; De Rosa, M.; Villano, R.; Scettri, A. Tetrahedron:
Asymmetry 2000, 11, 2255–2258.
6. For recent references on organocatalysis, see: (a) Brandes,
S.; Niess, B.; Bella, M.; Prieto, A.; Overgaard, J.;
Jorgensen, K. A. Chem. Eur. J. 2006, 12, 6039–6052; (b)
Bertelsen, S.; Marigo, M.; Brandes, S.; Diner, P.; Jorgen-
sen, K. A. J. Am. Chem. Soc. 2006, 128, 12973–12980; (c)
1
neat) 2922, 1656, 1583, 1521, 1450, 1394, 1231; H NMR
(CDCl3, 400 MHz): d 8.28 (2H, d, J = 8.6 Hz), 7.59 (2H,
d, J = 8.6 Hz), 5.61 (1H, dd, J = 12.9, 3.9 Hz), 4.98 (1H,
s), 3.86 (3H, s), 2.77 (1H, dd, J = 16.8, 12.9 Hz), 2.68 (1H,
dd, J = 16.8, 3.9 Hz); 13C NMR (CDCl3, 400 MHz): d
190.6, 173.7, 148.0, 144.1, 126.6, 124.1, 82.8, 79.7, 56.2,
42.0; enantiomeric excess was determined by HPLC
(Chiralcel OD), hexane–iPrOH 90:10, 0.8 ml/min, minor
enantiomer tR = 84.9, major enantiomer tR = 113.6; Com-
pound 3h: yellow oil, m/z: 290 [M+Na]+; IR (KBr, neat)
3507, 2957, 1745, 1716, 1526, 1345–1077; 1H NMR
(CDCl3, 400 MHz): d 7.96 (1H, d, J = 8.2 Hz), 7.89 (1H,
d, J = 7.8 Hz), 7.67 (1H, m), 7.44 (1H, m), 5.70 (1H, dd,
J = 9.2, 1.9 Hz), 3.75 (3H, s), 3.55 (2H, s), 3.22 (1H, dd,
J = 17.7, 1.9 Hz), 2.87 (1H, dd, J = 17.7, 9.2 Hz); 13C