Journal of the American Chemical Society
Page 4 of 5
Res. 2015, 48, 1053–1064. (c) Rouquet, G.; Chatani, N. Angew. Chem., Int.
Ed. 2013, 52, 11726–11743.
1
(3) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154–13155. (b) Truong, T.; Klimovica, K.; Daugulis, O. J.
Am. Chem. Soc. 2013, 13, 9342–9345. (c) Shabashov, D.; Daugulis, O. J.
Am. Chem. Soc. 2010, 132, 3965–3972. (d) Zhang, S. Y.; Li, Q.; He, G.;
Nack, W. A.; Chen G. J. Am. Chem. Soc. 2015, 137, 531–539. (e) Inoue,
S.; Shiota, H.; Fukumoto Y.; Chatani N. J. Am. Chem. Soc. 2009, 131,
6898–6899. (f) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N.
J. Am. Chem. Soc. 2011, 133, 14952–14955. (g) Hasegawa, N.; Charra, V.;
Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 8070–
8073. (h) Aihara Y.; Chatani N. J. Am. Chem. Soc. 2013, 135, 5308–5311.
(4) (a) Norinder, J.; Matsumoto, A.; Yoshikai N.; Nakamura E. J. Am.
Chem. Soc. 2008, 130, 5858–5859. (b) Shang, R.; Ilies, L.; Matsumoto, A.;
Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030–6032. (c) Asako, S.;
Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755–17757. (d)
Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2014, 136,
14349–14352. (e) Graczyk, K.; Haven, T.; Ackermann, L. Chem. Eur. J.
2015, 21, 8812–8815.
(5) (a) Engle, K. M.; Mei, T.ꢀS.; Wasa, M.; Yu, J.ꢀQ. Acc. Chem. Res.
2012, 45, 788–802. (b) Musaev, D. G.; Froese, R. D. J.; Svensson, M.;
Morokuma, K. J. Am. Chem. Soc. 1997, 119, 367–374. (c) Yoshikai, N.;
Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 15258–15259.
(d) Deng, L.; Woo, T. K.; Cavallo, L.; Margl, P. M.; Ziegler, T. J. Am.
Chem. Soc. 1997, 119, 6177–6186. (e) Li, G.; Wan, L.; Zhang, G.; Leow,
D.; Spangler, J.; Yu, J.ꢀQ. J. Am. Chem. Soc. 2015, 137, 4391–4397.
(6) (a) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137,
7660–7663. (b) Ilies, L.; Ichikawa, S.; Asako, S.; Matsubara, T.;
Nakamura, E. Adv. Synth. Catal. 2015, 357, 2175ꢀ2179. (c) Sun, Y.; Tang,
H.; Chen, K.; Hu, L.; Yao, J.; Shaik, S.; Chen, H. J. Am. Chem. Soc. 2016,
138, 3715–3730.
(7) Li, P.; Bruin, B.; Reek, J. N. H.; Dzik, W. I. Organometallics 2015, 34,
5009−5014.
(8) (a) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011,
111, 5215–5246. (b) Schçnherr, H.; Cernak, T. Angew. Chem., Int. Ed.
2013, 52, 12256–12267.
(9) Kellis Jr, J.ꢀT.; Vickery, L.ꢀE. Science 1984, 225, 1032ꢀ1034.
(10) (a) Nakamura, E.; Sato, K. Nat. Mater. 2011, 10, 158–161. (b) Yu, R.
P.; Hesk, D.; Rivera, N.; Pelczer I; Chirik, P. J. Nature 2016, 529, 195–
199. (c) Chen, M. S.; White, M. C. Science 2010, 327, 566ꢀ571. (d)
Sharma, A.; Hartwig, J. F. Nature 2015, 517, 600–604.
(11) (a) Giri, R.; Maugel, N.; Li, J.ꢀJ.; Wang, D.ꢀH.; Breazzano, S. P.;
Saunders, L. B.; Yu, J.ꢀQ. J. Am. Chem. Soc. 2007, 129, 3510–3511. (b)
Rosen, B. R.; Simke, L. R.; ThuyꢀBoun, P. S.; Dixon, D. D.; Yu, J.ꢀQ.;
Baran, P. S. Angew. Chem., Int. Ed. 2013, 52, 7317–7320. (c) Chan, K. S.
L.; Wasa, M.; Chu, L.; Laforteza, B. N.; Miura, M.; Yu, J.ꢀQ. Nat. Chem.
2014, 6, 146–150.
2
3
4
5
6
7
8
9
In summary, a new tridentate phosphine ligand, NMe2-TP,
was found to be very effective for ironꢀcatalyzed C–H
methylation of simple aromatic carbonyl compounds without
recourse to additional directing groups, which enhances the utility
of the C–H activation synthetic strategy. Wide substrate generality,
functional group tolerance and resistance to catalytic poisons are
additional attractive features of the new catalytic system, together
with the economical and environmental merits of iron catalysis.10
Although an iron(II) complex of TP was recently reported in the
literature,7 tridentate phosphines such as TP and NMe2-TP have
not, to our knowledge, been utilized for metal catalysis, and we
expect that their potential in catalysis is worthy of careful
investigations in the future.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and physical properties of the
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
*laur@chem.s.uꢀtokyo.ac.jp; *nakamura@chem.s.uꢀtokyo.ac.jp.
ACKNOWLEDGMENTS
We thank MEXT for financial support (GrantꢀinꢀAid for Young
Scientists (A) No. 26708011 and JSPS KAKENHI Grant Number
JP16H01005 in Precisely Designed Catalysts with Customized
Scaffolding to L.I.). This work was supported by CREST, JST.
R.S. thanks the Japan Society for the Promotion of Science for a
Research Fellowship for Young Scientists (26ꢀ04342). We thank
Yi Zhou for synthesis of substrate 1, and assistance in synthesis of
NMe2-TP, Dr. Kazutaka Shoyama for the single crystal Xꢀray
analysis, and Prof. Yao Fu of USTC for kindly providing the
starting material for the synthesis of compound 26.
(12) Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc.
2014, 136, 646–649.
(13) (a) Asako, S.; Norinder, J.; Ilies, L.; Yoshikai, N.; Nakamura, E. Adv.
Synth. Catal. 2014, 356, 1481–1485. (b) Matsumoto, A.; Ilies, L.;
Nakamura, E. J. Am. Chem. Soc. 2011, 133, 6557–6559.
(14) Biswas, K.; Prieto, O.; Goldsmith, P. J.; Woodward, S. Angew. Chem.,
Int. Ed. 2005, 44, 2232–2234.
(15) Röhrig, U. F.; Majjigapu, S. R.; Vogel, P.; Zoete, V.; Michielin, O. J.
Med. Chem. 2015, 58, 9421−9437.
REFERENCES
(1) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N. Nature 1993, 366, 529–531. (b) Kakiuchi, F.;
Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N.; Murai S.
Bull. Chem. Soc. Jpn. 1995, 68, 62–83. (c) Huang, Z.; Lim, H. N.; Mo, F.;
Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764–7786.
(16) Liu, Y.ꢀJ.; Xu, H.; Kong, W.ꢀJ.; Shang, M.; Dai, H.ꢀX.; Yu, J.ꢀQ.
Nature 2014, 515, 389–393.
(2) Selected reviews, see: (a) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147–1169. (b) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem.
ACS Paragon Plus Environment