Organic Letters
Letter
Am. Chem. Soc. 2007, 129, 6328−6335. (c) Bertrand, M. B.; Neukom, J.
D.; Wolfe, J. P. J. Org. Chem. 2008, 73, 8851−8860. (d) Muniz, K.;
̃
Hovelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763−773.
̈
(e) Ye, X.; Liu, G.; Popp, B. V.; Stahl, S. S. J. Org. Chem. 2011, 76,
1031−1044.
(3) Selected examples of alkene difunctionalization using high-valent
iodine reagents: (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am.
Chem. Soc. 2005, 127, 7690−7691. (b) Streuff, J.; Hovelmann, C. H.;
̈
Nieger, M.; Muniz, K. J. Am. Chem. Soc. 2005, 127, 14586−14587.
̃
(c) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179−7181.
(d) Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46, 5737−
5740. (e) Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2013, 15, 46−49.
(f) Martínez, C.; Wu, Y.; Weinstein, A. B.; Stahl, S. S.; Liu, G.; Muniz,
̃
K. J. Org. Chem. 2013, 78, 6309−6315. (g) Chen, H.; Kaga, A.; Chiba, S.
Org. Lett. 2014, 16, 6136−6139.
(4) Alkene difunctionalization using NFSI as the oxidant: (a) Sibbald,
P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J. Am. Chem. Soc.
2009, 131, 15945−15951. (b) Liskin, D. V.; Sibbald, P. A.; Rosewall, C.
F.; Michael, F. E. J. Org. Chem. 2010, 75, 6294−6296. (c) Engle, K. M.;
Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478−
1491. (d) Ingalls, E. L.; Sibbald, P. A.; Kaminsky, W.; Michael, F. E. J.
Am. Chem. Soc. 2013, 135, 8854−8856.
(5) (a) Zhu, H.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 1766−
1769. (b) Zhu, H.; Chen, P.; Liu, G. Org. Lett. 2015, 17, 1485−1488.
(6) Reviews of Wacker oxidation and selected examples: (a) Takacs, J.
M.; Jiang, X. Curr. Org. Chem. 2003, 7, 369−396. (b) Cornell, C. N.;
Sigman, M. S. Inorg. Chem. 2007, 46, 1903−1909. (c) Keith, J. A.;
Henry, P. M. Angew. Chem., Int. Ed. 2009, 48, 9038−9049. (d) Dong, J.
J.; Browne, W. R.; Feringa, B. L. Angew. Chem., Int. Ed. 2015, 54, 734−
744. (e) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc.
2005, 127, 17778−17788. (f) Trend, R. M.; Ramtohul, Y. K.; Ferreira,
E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892−2895.
(g) Wickens, Z. K.; Morandi, B.; Grubbs, R. H. Angew. Chem., Int. Ed.
2013, 52, 11257−11260. (h) Wickens, Z. K.; Skakuj, K.; Morandi, B.;
Grubbs, R. H. J. Am. Chem. Soc. 2014, 136, 890−893.
Figure 1. Proposed catalytic cycle. For clarity, the full ligand set on
palladium is not shown. Intermediate II could be a different high-valent
palladium species such as PdIII.
example of a catalytic NOx species serving as a compatible
electron transfer mediator to access a high-valent palladium
species with molecular oxygen as the terminal oxidant. Ongoing
mechanistic studies of this unique catalytic system, including a
full stereochemical analysis, would be beneficial to the
development of novel stereoselective methods. Finally, in
today’s renaissance of NOx redox chemistry, we anticipate that
efficient utilization of the oxidation potential of O2 will enable
access to even more environmentally benign processes rather
than consuming other high-energy/high-cost stoichiometric
oxidants.
ASSOCIATED CONTENT
* Supporting Information
■
S
(7) (a) Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.;
Vedernikov, A. N. Chem. Commun. 2008, 31, 3625−3627. (b) Wang,
A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846−3847.
(c) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654−14655.
(d) Tang, F.; Zhang, Y.; Rath, N. P.; Mirica, L. M. Organometallics
2012, 31, 6690−6696. (e) Khusnutdinova, J. R.; Rath, N. P.; Mirica, L.
M. J. Am. Chem. Soc. 2012, 134, 2414−2422.
The Supporting Information is available free of charge on the
Experimental procedures and compound characterization
AUTHOR INFORMATION
Corresponding Authors
(8) (a) Fairlamb, I. J. S. Angew. Chem., Int. Ed. 2015, 54, 10415−
10427. (b) Gerken, J. B.; Stahl, S. S. ACS Cent. Sci. 2015, 1, 234−243.
(c) Liang, Y.-F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. ACS Catal.
2015, 5, 1956−1963. (d) Zultanski, S. L.; Stahl, S. S. J. Organomet.
Chem. 2015, 793, 263−268. For a review of the NO2/NO redox cycle
in transition-metal chemistry, see: (e) Ford, P. C.; Lorkovic, I. M.
Chem. Rev. 2002, 102, 993−1018.
■
Notes
The authors declare no competing financial interest.
(9) Stowers, K. J.; Kubota, A.; Sanford, M. S. Chem. Sci. 2012, 3,
3192−3194.
ACKNOWLEDGMENTS
■
(10) Wickens, Z. K.; Guzman
Ed. 2015, 54, 236−240.
́
, P. E.; Grubbs, R. H. Angew. Chem., Int.
The authors thank the NIH (R01GM031332 and
R01GM080269) and Caltech for financial support. Dr. Scott
C. Virgil (Caltech) is thanked for assistance with GC analysis.
Dr. David VanderVelde (Caltech) and Dr. Mona Shahgholi
(Caltech) are acknowledged for help in structural determination
and characterizations.
(11) (a) Thiemann, M.; Scheibler, E.; Wiegand, K. W. Nitric Acid,
Nitrous Acid, and Nitrogen Oxides. In Ullmann’s Encyclopedia of
Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005.
(b) Laue, W.; Thiemann, M.; Scheibler, E.; Wiegand, K. W. Nitrates
and Nitrites. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-
VCH: Weinheim, Germany, 2005.
́
(12) Campora, J.; Palma, P.; del Río, D.; Carmona, E.; Graiff, C.;
REFERENCES
■
Tiripicchio, A. Organometallics 2003, 22, 3345−3347.
(1) Selected reviews of Pd-catalyzed alkene difunctionalization
experiments and Table S2 for catalyst ratio studies. Possible
heterobimetallic Pd/Cu catalyst species were suggested by previous
computational studies. See: Jiang, Y.-Y.; Zhang, Q.; Yu, H.-Z.; Fu, Y.
ACS Catal. 2015, 5, 1414−1423.
reactions: (a) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412−9423.
̃
(b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39,
712−733. (c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev.
2010, 110, 824−889. (d) Hickman, A. J.; Sanford, M. S. Nature 2012,
484, 177−185. (e) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed.
2016, 55, 2636−2649.
(2) Pd-catalyzed amination reactions: (a) McDonald, R. I.; Liu, G.;
Stahl, S. S. Chem. Rev. 2011, 111, 2981−3019. (b) Liu, G.; Stahl, S. S. J.
C
Org. Lett. XXXX, XXX, XXX−XXX