Organometallics 2003, 22, 2187-2189
2187
Ben zen e C-H Activa tion by Tw o Isom er ic P la tin u m (II)
Com p lexes of Bis(N-7-a za in d olyl)m eth a n e
Datong Song and Suning Wang*
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Received March 10, 2003
Summary: Two isomeric Pt(II) complexes, Pt(L1)(CH3)2
(1a ) and Pt(L2)(CH3)2 (2a ), based on two isomeric and
fluorescent ligands of bis(N-7-azaindolyl)methane, L1
(symmetric) and L2 (asymmetric), have been synthesized
and fully characterized by NMR and X-ray diffraction
analyses. In the presence of [H(Et2O)2][BAr′4] (Ar′ ) 3,5-
bis(trifluoromethyl)phenyl), both 1a and 2a are capable
of activating a benzene C-H bond readily at ambient
temperature. The products from benzene activation by
1a and 2a have been isolated as [Pt(L1)Ph(SMe2)][BAr′4]
(1b) and [Pt(L2)Ph(SMe2)][BAr′4] (2b). The structures
of 1b and 2b have been determined by X-ray diffraction
analyses. The phenyl ligand in 2b is bound exclusively
trans to the pyrrole nitrogen atom of L2.
under relatively mild conditions. Extensive studies have
been carried out on the mechanism of C-H activation
by cationic Pt(II) complexes4a-j to understand the key
steps in the catalytic cycle of the Shilov system and to
design better and practical catalytic systems. Most
previously reported cationic Pt(II) complexes that are
capable of activating C-H bonds involve a diimine
ligand with the general formula of Ar′NdC(R)C(R)d
NAr′ or Ar′NdC(R)CHC(R)dNAr′-. In contrast, the use
of cationic Pt(II) complexes containing nitrogen donor
atoms that are part of a nitrogen heterocycle in C-H
bond activation has hardly been explored.5 Many nitro-
gen-containing aromatic heterocyclic ligands are known
to be fluorescent. Incorporation of such a ligand to a
cationic Pt(II) complex may enable photochemical acti-
vation of C-H bonds. Recently we have reported that
Pt(II) complexes containing the highly emissive 7-aza-
indolyl group are capable of facile photochemical activa-
tion of C-Cl bonds.6 Encouraged by this finding, we
initiated the investigation on the potential of Pt(II)
complexes containing 7-azaindolyl groups in photochemi-
cal C-H bond activation. The ligands chosen for our
study are two fluorescent isomers of bis(7-azaindolyl)-
methane, L1 and L2, reported recently by our group7.
In addition to being fluorescent, L1 and L2 are capable
of chelating to a metal center. Furthermore, the isomeric
structures of L1 and L2 would allow us to study the
impact of the subtle electronic difference of the nitrogen
donor atoms of these two ligands on C-H bond activa-
tion by the corresponding Pt(II) complexes Pt(L1)(CH3)2,
1a , and Pt(L2)(CH3)2, 2a .
Since Shilov and co-workers1 demonstrated the cata-
lytic oxidation of CH4 into CH3OH and CH3Cl, using a
Pt(II) salt as a catalyst and stoichiometric amount of
Pt(IV) species as an oxidant in an aqueous system, the
direct and selective functionalization of hydrocarbons
by late transition metal complexes under mild condi-
tions has attracted much research efforts2 due to their
potential applications on the utilization of hydrocarbon
resources from natural gas or petroleum. Some recent
advances3 toward this ultimate goal have been demon-
strated in processes related to the Shilov system.
Recently, Labinger, Bercaw, Tilset, and other groups4
have demonstrated that cationic organoplatinum com-
plexes can activate both arene and alkane C-H bonds
(1) (a) Goldshlegger, N. F.; Tyabin, M. B.; Shilov, A. E.; Shteinman,
A. A. Zh. Fiz. Khim. 1969, 43, 2174. (b) Goldshlegger, N. F.; Eskova,
V. V.; Shilov, A. E.; Shteinman, A. A. Zh. Fiz. Khim. 1972, 46, 1353.
(2) (a) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T.
H. Acc. Chem. Res. 1995, 28, 154. (b) Bengali, A. A.; Arndtsen, B. A.;
Burger, P. M.; Schultz, R. H.; Weiller, B. H.; Kyle, K. R.; Moore, C. B.;
Bergman, R. G. Pure Appl. Chem. 1995, 67, 281. (c) Crabtree, R. H.
Chem. Rev. 1995, 95, 987. (d) Shilov, A. E.; Shulpin, G. B. Chem. Rev.
1997, 97, 2879. (e) Stahl, S. S.; Labinger, J . A.; Bercaw, J . E. Angew.
Chem., Int. Ed. 1998, 37, 2180. (f) Labinger, J . A.; Bercaw, J . E. Nature
2002, 417, 507.
(3) (a) Periana, R. A.; Taube, J . D.; Gamble, S.; Taube, H.; Satoh,
T.; Fujii, H. Science 1998, 280, 560. (b) Sen, A. Acc. Chem. Res. 1998,
31, 550.
(4) (a) Stahl, S. S.; Labinger, J . A.; Bercaw, J . E. J . Am. Chem. Soc.
1996, 118, 5961. (b) Holtcamp, M. W.; Labinger, J . A.; Bercaw, J . E.
J . Am. Chem. Soc. 1997, 119, 848. (c) Holtcamp, M. W.; Henling, L.
M.; Day, M. W.; Labinger, J . A.; Bercaw, J . E. Inorg. Chim. Acta 1998,
270, 467. (d) J ohansson, L.; Ryan, O. B.; Tilset, M. J . Am. Chem. Soc.
1999, 121, 1974. (e) J ohansson, L.; Tilset, M.; Labinger, J . A.; Bercaw,
J . E. J . Am. Chem. Soc. 2000, 122, 10846. (f) J ohansson, L.; Tilset, M.
J . Am. Chem. Soc. 2001, 123, 739. (g) J ohansson, L.; Ryan, O. B.;
Rømming, C.; Tilset, M. J . Am. Chem. Soc. 2001, 123, 6579. (h)
Procelewska, J .; Zahl, A.; van Eldik, R.; Zhong, H. A.; Labinger, J . A.;
Bercaw, J . E. Inorg. Chem. 2002, 41, 2808. (i) Zhong, H. A.; Labinger,
J . A.; Bercaw, J . E. J . Am. Chem. Soc. 2002, 124, 1378. (j) Wik, B. J .;
Lersch, M.; Tilset, M. J . Am. Chem. Soc. 2002, 124, 12116. (k) Fang,
X.; Scott, B. L.; Watkin, J . G.; Kubas, G. J . Organometallics 2000, 19,
4193. (l) Konze, W. V.; Scott, B. L.; Kubas, G. J . J . Am. Chem. Soc.
2002, 124, 12550. (m) Fekl, U.; Goldberg, K. I. J . Am. Chem. Soc. 2002,
124, 6804.
The organoplatinum(II) complexes 1a and 2a were
obtained in ∼80% yield by the reactions of L1 and L2
with Pt2Me4(µ-SMe2)2,8 respectively. The structures of
these two complexes were determined by single-crystal
(5) Reinartz, S.; White, P. S.; Brookhart, M.; Templeton, J . L.
Organometallics 2001, 124, 6804.
(6) Song, D.; Sliwowski, K.; Pang, J .; Wang, S. Organometallics
2002, 21, 4978.
(7) Song, D.; Schmider, H.; Wang, S. Org. Lett. 2002, 4, 4049.
(8) Scott, J . D.; Puddephatt, R. J . Organometallics 1983, 2, 1643.
10.1021/om0301785 CCC: $25.00 © 2003 American Chemical Society
Publication on Web 04/01/2003