Chemistry Letters 2000
207
account for the formation of most hydrocarbons in petroleum.17
In conclusion, the results of the present study implies,
therefore, that DHP can be an important precursor of pristane in
petroleum/geolipids. DHP is a reduction product of phytol,
which is produced by cleavage of the phytyl side chain of
chlorophylls. For the production of DHP, the following
processes are known to play an important role under oxic con-
dition: a grazing of planktonic detritus by benthos,18 reduction
through the guts of copepods,19 or microbiological reduction of
phytol in early diagenesis.20
We hypothesize consequently that large ratios of pristane
over phytane frequently observed in petroleum/geolipids is
brought about by the following steps: (1) Formation of DHP
from phytol (hydrolysis product of chla) by microbial reaction
under oxic conditions, (2) formation of both C19 and C20 isops
by geothermal heating of DHP or DHP-incorporated kerogen,21
and (3) subsequent reduction of C19 and C20 isops.
The yield of C19 isops predominates that of C20 isops in all
cases, and the ratio of the former to the latter increases with
increase of heating time as we predicted. This result can
explain the ratios of pristane to phytane in petroleum/geolipids.
Moreover, carbon isotope compositions of pristane and phytane
which were obtained by reduction of C19 and C20 isops, give
similar values (difference within 0.5‰). The scheme shown
below is a plausible reaction for thermal decomposition of
DHP. The radical chain reaction sufficiently explains the for-
mation of C19 isops as well as C20 isops. Similar reactions are
assumable for the formation of C19 isops in sediment because
thermal processes including radical and catalytic reactions may
References and Notes
1
2
3
4
5
6
B. M. Didyk, B. R. T. Simoneit, S. C. Brassell, and G. Eglinton,
Nature, 272, 216 (1978).
M. Ishiwatari, R. Ishiwatari, H. Sakashita, T. Tatsumi, and H.
Tominaga, Chem. Lett., 1990, 875.
M. Ishiwatari, R. Ishiwatari, H. Sakashita, T. Tatsumi, and H.
Tominaga, J. Anal. Appl. Pyrolysis, 18, 207 (1991).
M. Ishiwatari, R. Ishiwatari, H. Sakashita, and T. Tatsumi, J.
Anal. Appl. Pyrolysis, 35, 237 (1995).
M. Ishiwatari, R. Ishiwatari, and K. Yamada, Chem. Lett., 1997,
355.
D. van de Meent, J. W. de Leeuw, and P. A. Schenck, in
"Advances in Organic Geochemistry 1979," ed by J. R.
Maxwell and A. G. Douglas, Pergamon, Oxford (1980), p. 469.
M. Ishiwatari, R. Ishiwatari, H. Sakashita, and T. Tatsumi, J.
Anal. Appl. Pyrolysis, 32, 153 (1995).
7
8
9
M. Ishiwatari, K. Yamada, and R. Ishiwatari, Chem. Lett., 1999,
43.
J. D. Brooks, K. Gould, and J. W. Smith, Nature, 222, 257
(1969)
10 J. W. de Leeuw, B. R. Simoneit, Jaap. J. Boon, W. I. C.
Rijpstra, F. de Lange, J. C. W. v.d. Leeden, V. A. Correia, A. L.
Burlingame, and P. A. Schenck, "Advances in Organic
Geochemistry 1975," ed by R. Campos and J. Goni, Enadimsa,
Madrid (1977), pp. 61-79.
11 T. G. Powell and D. M. McKirdy, Nature (London) Phys. Sci.,
243, 37 (1973).
12 H. L. ten Haven, J. W. de Leeuw, J. Rullkotter, and J. S.
Sinninghhhe Damste, Nature, 330, 641 (1987).
13 H. Goossens, J. W. de Leeuw, P. A. Schenk, and S. C. Brassel,
Nature, 312, 440 (1984).
14 J. M. Hayes, K. H. Freeman, B. N. Popp, and C. H. Hoham,
Org. Geochem., 16, 1115 (1990).
15 L. A. F. Trindade and S. C. Brassel, Fevista Latino-Americana
de Geochimica Organica, 1,1 (1995).
16 M. Bjorøy, P.B. Hall, E. Hustad, and J.A. Williams, Org.
Geochem., 19, 89 (1992).
17 Y. V. Kissin, Geochim. Cosmochim. Acta, 51, 2445 (1987)
18 M.-Y. Sun, S. G, Wakeham, R. C. Aller, and C. Lee, Marine
Chemistry, 62, 157 (1998)
19 F. G. Prahl, G. Eglinton, E. D. S. Corner, and S. C. M. O'Hara,
Science, 224, 1235 (1984).
20 P. W. Brooks, J. R. Maxwell, and R. L. Patience, Geochim.
Cosmochim. Acta, 42, 1175 (1978).
21 J. P. Forsman and J. M. Hunt, in "Habitat of Oil," ed by L. G.
Weeks, Am. Assoc. Pet. Geologists, Tulsa (1958), p. 747:
Kerogen is defined insoluble organic matter in sedimentary
rocks. It is thought to be an intermediate from source organic
matter to petroleum.