2008
M. C. Van Zandt et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2006–2008
Table 1
In vitro activity of 7-azaindoleacetic acid ARIs
F
F
N
S
F
N
R
X
O
OH
Ex.
R
X
hALR2a (nM)
HALR1b (nM)
1
17
16
15
H
H
CH
N
N
5
7
8
12
27,000
>100,000c
>100,000
>100,000
CH3
CH2CH3
N
a
b
c
Figure 3.
Recombinant human aldose reductase.
Recombinant human aldehyde reductase.
%Inhibition < 50% @ 100,000 lM.
Although it is not clear what selectivity profile is necessary to
avoid potential aldehyde reductase related toxicity, combining
the 4,5,7-trifluorobenzothiazole with novel heterocycle cores such
as the 7-azaindole, can result is new ARIs with exceptional potency
and selectivity.
Acknowledgments
This work was supported, in part, by the Centre National de la
Recherche Scientifique (CNRS), the Institut National de la Santé
et de la Recherche Médicale and the Hôpital Universitaire de Stras-
bourg (H.U.S.). We thank the personnel of the SBC, and in particular
Andrzej Joachimiak and Ruslan Sanishvili (Nukro), for their help in
data collection.
Supplementary data
Figure 2.
Supplementary data associated with this article can be found, in
The use of X-ray crystallography early in the program was
essential. The structures provided a clear understanding of the
important interactions that make up the enzyme-inhibitor com-
plexes. The complexes were obtained using human ALR2 expressed
in Escherichia Coli and crystallized with the oxidized form of the
coenzyme b-NADPH+ at pH 5 and 277 K. Diffraction data for exam-
ple 17 was collected with a laboratory source at a resolution of
1.8 Å. As illustrated in Figure 2, the inhibitor is oriented in the ac-
tive site of ALR2 in a manner such that the hydrophilic carboxylate
head forms tight hydrogen bonds with the OH of Tyr 48 (2.74 Å),
the NE2 of His 110 (2.74 Å) and the NE1 of Trp 111 (2.96 Å). These
hydrogen bonds anchor the inhibitor in an anionic well deep with-
in the enzyme active site. Interactions between the aromatic
hydrophobic side chain of the inhibitor and apolar and aromatic
residues lining the active sites further stabilize the inhibitors.
As this class of inhibitors bind to the ALR2 active site, a confor-
mational change occurs opening a pocket between Trp 111 and Leu
300. The specific opening of the pocket varies to accommodate the
particular inhibitor, producing an ‘induced fit’. Since the residues
lining this pocket are not conserved in ALR1, the interactions in
this pocket are specific for ALR2. This is exemplified in Figure 3,
where the structure of the complex ALR2—example 17 has been
superposed with the structure of ALR1 (magenta). Using this
superposed structure, it is clear that the inhibitor has strong steric
clashes with the ALR1 residues Pro 301 (1.35 Å) and Tyr 116
(1.10 Å). These clashes can explain the strong selectivity of this
class of inhibitors for ALR2 versus ALR1. The structure of example
17 has been deposited in the Protein Data Bank. The PDB code is
3G5E.
References and notes
1. Lorenzi, M. Exp. Diabetes Res. 2007, 61038.
2. (a) Textbook of Diabetes; Pickup, J. C., Williams, G., Eds.; Blackwell Science Ltd:
United Kingdom, 1997; Vol. 1,. Chapter 42 (b) Williamson, J. R. et al Diabetes
1993, 42, 801; (c) Setter, S. M.; Campbell, R. K.; Cahoon, C. J. Ann. Pharmacother.
2003, 37, 1858; (d) Oates, P. J. Curr. Drug Targets 2008, 9, 14.
3. Ramirez, M. A.; Borja, N. L. Pharmacotherapy 2008, 28, 646.
4. Hamada, Y.; Nakamura, J. Treatments Endocrinol. 2004, 3, 245.
5. (a) Shinoda, M.; Mori, S.; Shintani, S.; Ishikura, S.; Hara, A. Biol. Pharm. Bull.
1999, 22, 741; (b) Suzuki, K.; Koh, Y. H.; Mizuno, H.; Hamaoka, R.; Taniguchi, N.
J. Biochem. 1998, 123, 353; (c) Bodreddigari, S.; Jones, L. K.; Egner, P. A.;
Groopman, J. D.; Sutter, C. H.; Roebuck, B. D.; Guengerich, F. P.; Kensler, T. W.;
Sutter, T. R. Chem. Res. Toxicol. 2008, 21, 1134.
6. (a) Takahashi, M.; Fujii, J.; Teshima, T.; Suzuki, K.; Shiba, T.; Taniguchi, N. Gene
1993, 127, 249; (b) Kanazu, T.; Shinoda, M.; Nakayama, T.; Deyashiki, Y.; Hara,
A.; Sawada, H. Biochem. J. 1991, 279, 903.
7. Hamada, Y.; Araki, N.; Koh, N.; Nakamura, J.; Horiuchi, S.; Hotta, N. Biochem.
Biophys. Res. Commun. 1996, 228, 539.
8. (a) Oya, T.; Hattori, N.; Mizuno, Y.; Miyata, S.; Maeda, S.; Osawa, T.; Uchida, K. J.
Biol. Chem. 1999, 274, 18492; (b) Cavalot, F.; Anfossi, G.; Russo, I.; Mularoni, E.;
Massucco, P.; Mattiello, L.; Burzacca, S.; Hahn, A.; Trovati, M. Metabolism 1996,
45, 285; (c) Fu, M.; Wells-Knecht, K.; Blackledge, J.; Lyons, T.; Thorpe, S.;
Baynes, J. Diabetes 1994, 43, 676.
9. Harrison, D. H. T.; Bohren, K. M.; Petsko, G. A.; Ringe, D.; Gabbay, K. H.
Biochemistry 1997, 36, 16134.
10. (a) Van Zandt, M. C.; Jones, M. L.; Gunn, D.; Geraci, L. S.; Jones, J. H.; Sawicki, D.
R.; Sredy, J.; Jacot, J. L.; DiCioccio, A. T.; Petrova, T.; Mitschler, A.; Podjarny, A. D.
J. Med. Chem. 2005, 48, 3141; (b) Van Zandt, M. C.; Sibley, E. O.; McCann, E. E.;
Combs, K. J.; Flam, B.; Sawicki, D.; Sabetta, A.; Carrington, A.; Sredy, J.; Howard,
E.; Mitschler, A.; Chevrier, B.; Podjarny, A. Bioorg. Med. Chem. 2004, 12, 5661.
11. (a) El-Kabbani, O.; Podjarny, A. Cell Mol. Life Sci. 2007, 15, 1970; (b) Petrova, T.;
Steuber, H.; Hazemann, I.; Cousido-Siah, A.; Mitschler, A.; Chung, R.; Oka, M.;
Klebe, G.; El-Kabbani, O.; Joachimiak, A.; Podjarney, A. J. Med. Chem. 2005, 18,
5659.