10.1002/ejoc.202000823
European Journal of Organic Chemistry
COMMUNICATION
Experimental Section
Keywords: Cross-coupling • Heterocycles • Michael addition •
Multicomponent reactions • Sonogashira coupling
Typical procedure for the synthesis of compound 5b with 4-iodo
benzonitrile (1b)
[1]
[2]
T. J. J. Müller, ed., Science of Synthesis Series, Georg Thieme Verlag
Pd(PPh3)Cl2 (7.0 mg, 10 mol, 2.0 mol%) and CuI (3.8 mg, 20 mol,
4.0 mol%) were placed in a Schlenk tube with magnetic stir bar. After
three purge-thaw cycles with nitrogen DME (0.9 mL) was added and
the reaction mixture stirred at room temp for 10 min. Then, potassium
carbonate (138 mg, 1.0 mmol, 2.0 equivs) and 4-iodobenzonitrile (1b)
(114 mg, 0.50 mmol) were added and the reaction mixture was heated
to 40 °C. Ethyl propiolate (2) (98 mg, 1.0 mmol, 2.0 equivs) dissolved
in DME (0.6 mL) was added by syringe pump to the reaction mixture
over a period of 12 h. After complete addition, the reaction was stirred
at 40 °C for 1 h. Then, ethanol (1.5 mL) and pyrrolidine (4a) (36 mg,
0.50 mmol, 1.0 equiv) were added and the mixture stirred at 100 °C for
16 h. After cooling to room temp, 3.0 mL acetone was added and the
solvents were removed under reduced pressure. The crude product
was adsorbed on Celite® and purified by flash chromatography on silica
gel (n-hexane/ethyl acetate 3:1) to afford 5b (86 mg, 0.32 mmol, 64 %
yield) as a colorless solid, Mp 139 °C. 1H NMR (CDCl3, 300 MHz):
1.08 (t, J = 7.1 Hz, 3 H), 1.85-1.99 (m, 4 H), 2.92-3.32 (m, 4 H), 3.90 (q,
J = 7.1 Hz, 2 H), 4.71 (s, 1 H), 7.32-7.37 (m, 2 H), 7.67-7.73 (m, 2 H).
13C NMR (CDCl3, 75 MHz): 13.4 (CH3), 24.2 (CH2), 47.4 (CH2),
57.5 (CH2), 84.9 (CH), 111.0 (Cquat), 117.7 (Cquat), 127.5 (CH), 131.1
(CH), 141.6 (Cquat), 157.6 (Cquat), 166.7 (Cquat). EI-MS (m/z (%)): 270
(33) [M+], 242 [C14H14N2O2+] (17), 241 [C14H13N2O2+] (100), 225
[C14H13N2O+] (44), 198 [C13H14N2+] (37), 197 [C13H13N2+] (78), 169
[C9H15NO2+] (17), 156 (32), 128 [C9H6N+] (35), 70 [C4H8N+] (83). Anal.
calcd. for C16H18N2O2 (270.3): C, 71.09; H, 6.71; N, 10.36; Found:C,
70.95; H, 6.55; N, 10.15.
KG, Stuttgart, 2014, 5–27.
For recent reviews and editorials on the relevance of multicomponent
reactions in the synthesis of biologically active molecules, see e.g. a)
D. Insuasty, J. Castillo, D. Becerra, H. Rojas, R. Abonia, Molecules
2020, 25, 505. b) C. Cimarelli, Molecules 2019, 24, 2372; c) J. G.
Rudick, S. Shaabani, A. Dömling, Front. Chem. 2020, 7, 918. d) T. J.
J. Müller, Beilstein J. Org. Chem. 2019, 15, 1974–1975.
a) For a lead reference, see e.g. D. M. D’Souza, T. J. J. Müller, Chem.
Soc. Rev. 2007, 36, 1095–1108; For uracil analogues, see e. g. b) S.
Perrone, M. Capua, A. Salomone, L. Troisi, J. Org. Chem. 2015, 80,
8189-8197.
For reviews on the catalytic generation of alkynoyl intermediates and
their application in consecutive multicomponent syntheses of
heterocycles, see e.g. a) T. J. J. Müller, Top. Heterocycl. Chem. 2010,
25, 25–94; b) C. F. Gers-Panther, T. J. J. Müller, Adv. Heterocycl.
Chem. 2016, 120, 67–98.
For reviews on fluorophore syntheses by metal catalysis-initiated
consecutive multicomponent syntheses, see e.g. a) L. Levi, T. J. J.
Müller, Eur. J. Org. Chem. 2016, 2907–2918; b) T. J. J. Müller, Drug
Discov. Today Technol. 2018, 29, 19–26.
S. Bourrain, M. Ridgill, I. Collins, Synlett 2004, 795–798.
a) F. Giornal, S. Pazenok, L. Rodefeld, N. Lui,J-P. Vors, F. R. Leroux,
J. Fluorine Chem. 2013, 152, 2–11; b) T. Fujiwara, D. O’Hagan, J.
Fluorine Chem. 2014, 167, 16–29.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
J. Pérez, L. Riera, Eur. J. Inorg. Chem. 2009, 4913–4925.
S. Komiya, H. Shimizu, I. Nagasaki in Comprehensive Chirality, Vol.
9 (Eds.: E. M. Carreira, H. Yamamoto), Elsevier, Amsterdam, 2012,
83–103.
[10] G. Cardillo, C. Tomasini, Chem. Soc. Rev. 1996, 25, 117–128.
[11] For representative reviews, see e.g. a) W. J. Hoekstra, Curr. Med.
Chem. 1999, 6, 905–1004; b) C. Cabrele, T. A. Martinek, O. Reiser,
Ł. Berlicki, J. Med. Chem. 2014, 57, 9718–9739.
[12] N. Ikemoto, D. M. Tellers, S. D. Dreher, J. Liu, A. Huang, N. R. Rivera,
E. Njolito, Y. Hsiao, J. C. McWilliams, J. M. Williams, J. D. Armstrong,
Y. Sun, D. J. Mathre, E. J. J. Grabowski, R. D. Tillyer, J. Am. Chem.
Soc. 2004, 126, 3048–3049.
[13] T. A. Gudasheva, K. N. Kolyasnikova, E. A. Kuznetsova, S. A.
Litvinova, N. N. Zolotov, T. A. Voronina, R. U. Ostrovskaya, S. B.
Seredenin, Pharm. Chem. J. 2017, 50, 705–710.
[14] S. Hata, T. Iwasawa, M. Iguchi, K. I. Yamada, K. Tomioka, Synthesis
2004, 1471–1475.
[15] P. Benovsky, G. A. Stephenson, J. R. Stille, J. Am. Chem. Soc. 1998,
120, 2493– 2500.
Typical procedure for the synthesis of compound 7b with 4-
iodobenzonitrile (1b)
Pd(PPh3)Cl2 (7.0 mg, 10 mol, 2.0 mol%) and CuI (3.8 mg, 20 mol,
4.0 mol%) were placed in a Schlenk tube. After three purge-thaw cycles
with nitrogen DME (0.9 mL) was added and the reaction mixture stirred
at room temp for 10 min. Then, potassium carbonate (138 mg, 1.0 mmol,
2.0 equivs) and 4-iodobenzonitrile (1b) (114 mg, 0.50 mmol) were
added and the reaction mixture was heated to 40 °C. Ethyl propiolate
(2) (98 mg, 1.0 mmol, 2.0 equivs) dissolved in DME (0.6 mL) was added
by syringe pump to the reaction mixture over a period of 12 h. After
complete addition, the reaction was stirred at 40 °C for 1 h. Then,
ethanol (1.5 mL) and methyl hydrazine (6a) (23 mg, 0.50 mmol, 1.0
equiv) were added and the mixture stirred at 100 °C for 16 h. After
cooling to room temp, 3.0 mL acetone was added and the solvents were
removed under reduced pressure. The crude was adsorbed on Celite®
and purified by flash chromatography on silica gel (n-hexane/ethyl
acetate 3:1) to afford 7b (78 mg, 0.39 mmol, 78 % yield) as a colorless
solid, Mp 254 °C (dec.).1H NMR (DMSO-d6, 300 MHz): 3.66 (s, 3 H),
[16] M. Beyrati, A. Hasaninejad, Org. Prep. Proced. Int. 2016, 48, 393–
400.
[17] S. Fustero, M. G. de la Torre, V. Jofré, R. P. Carlón, A. Navarro, A. S.
Fuentes, J. S. Carrió, J. Org. Chem. 1998, 63, 8825–8836.
[18] W. C. Brown, R. W. Heidebrecht, J. Brubaker, C. Fischer, J. T.
Hendrix, E. H. Kelley, R. N. Maccoss, J. L. Methot, T. Miller, K. M.
Otte, P. Siliphaivanh, T. Reger, P. D. Williams, C. M. Wiscount, WO
Patent 2011046774, 2011.
[19] E. Schreiner, S. Braun, C. Kwasnitschka, W. Frank, T. J. J. Müller,
Adv. Synth. Catal. 2014, 342, 3135–3147.
[20] A. C. Götzinger, C. S. Michaelis, T. J. J. Müller, Dyes Pigment. 2017,
143, 308–316.
[21] T. Sakamoto, F. Shiga, A. Yasuhara, D. Uchiyama, Y. Kondo, H.
Yamanaka, Synthesis 1992, 1992, 746–748.
5.77 (s, 1 H), 7.68-7.73 (m, 2 H), 7.91-7.96 (m, 2 H), 9.80 (s, 1 H). 13
C
NMR (DMSO-d6, 75 MHz): 37.1 (CH3), 91.5 (CH), 110.6 (Cquat), 118.6
(Cquat), 128.9 (CH), 132.6 (CH), 134.7 (Cquat), 141.8 (Cquat), 160.0 (Cquat).
EI-MS (m/z (%)): 199 (100) [M+], 198 (48) 43 (10) [CH3N2+]. Anal. calcd.
for C11H9N3O (199.2): C, 66.32; H, 4.55; N, 21.09. Found: C, 66.45; H,
4.64; N, 20.07.
[22] Z. B. Papanastassiou, R. J. Bruni, E. V. White, J. Med. Chem. 1967,
10, 701–706.
[23] A. S. Karpov, T. J. J. Müller, Synthesis 2003, 2815–2826.
[24] J. Sandström, Dynamic NMR Spectroscopy, Academic Press,
London 1982.
[25] J. E. Haky, J. E. Saavedra, B. D. Hilton, Org. Magn. Reson. 1983, 21,
79–82.
[26] B. de Ancos, M. C. Maestro, M. R. Martín, A. I. Mateo, Tetrahedron
1994, 50, 13857–13864.
[27] M. Tafazzoli, A. Ziyaei-Halimjani, M. Ghiasi, M. Fattahi, M. R. Saidi,
J. Mol. Struct. 2008, 886, 24–31.
Acknowledgments
[28] Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication nos.
CCDC-1979471 (7j) and CCDC-1979472 (7e). Copies of the data can
be obtained free of charge on application to CCDC, 12 Union Road,
The authors cordially thank the Fonds der Chemischen
Industrie for support and B. Sc. Saskia Klein for the
experimental assistance.
Cambridge CB2 1EZ, UK (Fax:
+ 44-1223/336-033; E-mail:
deposit@ccdc.cam.ac.ukDOI: 10.1002/ejoc.200800444).
This article is protected by copyright. All rights reserved.