ꢀ-Ionyls as Antiradical Compounds
Letters in Organic Chemistry, 2010, Vol. 7, No. 4
341
NH2
NH2
.
ROO
+ ROO
N
N
4a
Fig. (5). Plausible electron transfer mechanism for antioxidant action of electron rich ꢀ-ionyl compounds.
4
[7]
[8]
Hinds, T. S.; West, W. L.; Knight, E. M. Carotenoids and retinoids:
a review of research, clinical, and public health applications, J.
Clin. Pharmacol. 1997, 37, 551-558.
Foote, C. S.; Denny, R. W. Chemistry of singlet oxygen. VII.
Quenching by ꢀ-carotene. J. Am. Chem., Soc., 1968, 90, 6233-
6235.
6, in which the unshared pair of electron on the nitrogen
atom is made less available due to resonance effect of the
sulphone group, to shield the lipid from either aerial or azo-
catalysed peroxidation.
In conclusion, it is found that while compounds 1, 3 and
4 are able to significantly suppress autoxidation of methyl
linoleate, keto-alcohol 2 apparently has little or no effect
suggesting that the hydroxyl group modulates the ability of
the ꢀ-ionyl structure to quench the chain-propagating
peroxyl radicals. AIBN-initiated oxidation of methyl
linoleate also proceeded nearly unhindered in the presence of
either compound 1 or compound 2. On the other hand,
compounds 3, 4 and 5 are able to defer the onset of AIBN-
triggered oxidation of methyl linoleate indicating that the
tosylhydrazone and guanidine moieties improve the
antiradical/antioxidant capabilities of the ꢀ-ionyl structure.
However, compound 6 is unable to deter either autoxidation
or AIBN-initiated oxidation of methyl linoleate, presumably
due to the electron withdrawing effect of the p-tosyl group.
The mechanism of antioxidant action by these molecules is
likely to involve electron transfer to the chain-carrying
peroxyl radical. Thus, the free radical-quenching ability of
these compounds is dependent on the ꢁ electron density of ꢀ-
ionyl structure. This study provides new directions for the
design and development of easily synthesizable amphiphilic
compounds in retinoid series as potential antioxidants and
radioprotectants.
[9]
El-Tinay, A. H.; Chichester, C. O. Oxidation of ꢀ-carotene. Site of
initial attack. J. Org. Chem., 1970, 35, 2290-2293.
Burton, G. W.; Ingold, K. U. Autoxidation of biological molecules.
1. Antioxidant activity of vitamin E and related chain-breaking
phenolic antioxidants in vitro. J. Am. Chem. Soc. 1981, 103, 6472-
6477.
Burton, G. W.; Ingold, K. U. ꢀ-Carotene: an unusual type of
antioxidant. Science, 1984, 224, 569-573.
Terao, J. Antioxidant activity of ꢀ-carotene-related carotenoids in
solution. Lipids, 1989, 24, 659-661.
[10]
[11]
[12]
[13]
Samokyszyn, V. M.; Marnett, L. J. Inhibition of liver microsomal
lipid 13-cis-retinoic acid peroxidation. Free Radic. Biol. Med.,
1990, 8, 491-496.
[14]
Palozza, P.; Krinsky, N. I. The inhibition of radical-initiated
peroxidation of microsomal lipids by both ꢁ-tocopherol and ꢀ-
carotene. Free Radic. Biol. Med., 1991, 11, 407-414.
Palozza, P; Krinsky, N. I. Antioxidant effects of carotenoids in vivo
and in vitro: an overview. Methods Enzymol., 1992, 213, 403-420.
Terao, J.; Nagao, A.; Park, D. -K.; Lim, B. P. Lipid hydroperoxide
assay for antioxidant activity of carotenoids. Methods Enzymol.,
1992, 213, 454-460.
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
Livrea, M. A.; Tisoriere, L. Lipoperoxyl radical-scavenging
activity of vitamin A and analogs in homogeneous solution.
Methods Enzymol., 1994, 234, 401-410.
Hill, T. J.; Land, E. J.; McGarvey, D. J.; Schalch, W.; Tinkler, J.
H.; Truscott, T. G. Interactions between carotenoids and the
·
CCl3O2 radical. J. Am. Chem. Soc., 1995, 117, 8322-8326.
Miller, N. J.; Sampson, J.; Candeias, L. P.; Bramley, P. M.; Rice-
Evans, C. A. Antioxidant activities of carotenes and xanthophylls.
FEBS Lett., 1996, 384, 240-242.
Konovalova, T. A.; Kispert, L. D.; Polyakov, N. E.; Leshina, T. V.
EPR spin traping detection of carbon-centered carotenoid and ꢀ–
ionone radicals. Free Radic. Biol. Med., 2000, 28, 1030-1038.
Bast, A.; Haenen, G. R. M. M. The toxicity of antioxidants and
their metabolites. Environ. Toxicol. Pharmacol., 2002, 11, 251-
258.
Rozanowska, M.; Cantrell, A.; Edge, R.; Land, E. J.; Sarna, T.;
Truscott, T. G. Pulse radiolysis study of the interaction of retinoids
with peroxyl radicals. Free Radic. Biol. Med., 2005, 39, 1399-
1405.
Raynaud, C.; Poteau, R.; Maron, L.; Jolibois, F. Ab initio
molecular dynamics simulation of the UV absorption spectrum of
ꢀ-ionone. J. Mol. Struct. (THEOCHEM), 2006, 771, 43-50.
Terstegen, F.; Bub, V. Geometries and interconversion pathways of
free and protonated ꢀ-ionone Schiff bases. An ab initio study of
photoreceptor chromophore model compounds. Chem. Phys. 1997,
225, 163-171.
Chapman, J. M.; Curly, R. W. Jr. Affinity chromatographic
purification of serum retinol-binding protein using 4-substituted
aminoretinoids. J. Biochem. Biophys. Methods, 1989, 19, 287-300.
Baasov, T.; Sheves, M. Model compounds for the study of
spectroscopic properties of visual pigments and bacteriorhodopsin.
J. Am. Chem. Soc., 1985, 107, 7524-7533.
Winterhalter, P.; Harmsen, S.; Trani, F. A C13-norisoprenoid
gentiobioside from quince fruit. Phytochemistry, 1991, 30, 3021-
3025.
Broom, S. J.; Ede, R. M.; Wilkins, A. L. Synthesis of (±)-E-4-
(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)-but-3-en-2-one:A novel
degraded carotenoid isolated from New Zealand Thyme (Thymus
vulgaris) honey. Tetrahedron Lett., 1992, 33, 3197-3200.
ACKNOWLEDGEMENTS
Financial supports from BRNS [No. 2002/37/1/
BRNS/1032], Government of India and Research Fellowship
to SBL from the Government of the Federal Democratic
Republic of Ethiopia are gratefully acknowledged.
REFERENCES
[23]
[24]
[1]
Farber, J. L. Mechanism of cell injury by activated oxygen species.
Environ. Health Per. 1994, 102, 17-24.
[2]
Blokhina, O.; Virolainen, V.; Fagerstedt, K. V. Antioxidants,
oxidative damage and oxygen deprivation stress: a review. Ann.
Bot., 2003, 91, 179-194.
[3]
[4]
Weiss, J. F.; Landauer, M. R. Radioprotection by antioxidants.
Chuang C. Chiueh, Ed.; In Reactive oxygen species: From
radiation to molecular biology - A Festschrift in honor of Daniel L.
Gilbert. Ann. N. Y. Acad. Sci., 2000, 899, 44-60.
Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.; Sharma, A.; Kumar,
R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R. K.
Radioprotection by plant products: present status and future
prospects. Phytother. Res. 2005, 19, 1-22.
[25]
[26]
[27]
[28]
[5]
[6]
Hosseinmehr, S. J. Foundation review: trends in the development
of radioprotective agents. Drug Discov. Today, 2007, 12, 794-805.
Sporn, M. B.; Roberts, A. B.; Goodman, D. S. Eds., The Retinoids,
Academic Press: Orlando, 1984, Vol. 1 and 2.