10.1002/adsc.201800726
Advanced Synthesis & Catalysis
Zhang, D. A. Watson, S. L. Buchwald, Science 2010, 328, 1679; d) L.
Chu, F.-L. Qing, Org. Lett. 2010, 12, 5060; e) C.-P. Zhang, Z.-L.
Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Angew. Chem.,
Int. Ed. 2011, 50, 1896; f) K. Niedermann, N. Frꢀh, E. Vinogradova,
M. S. Wiehn, A. Moreno, A. Togni, Angew. Chem., Int. Ed. 2011, 50,
1059; g) E. Mejía, A. Togni, ACS Catal. 2012, 2, 521; h) Y. Ye, S. A.
Kꢀnzi, M. S. Sanford, Org. Lett. 2012, 14, 4979; i) S. P. Pitre, C. D.
McTiernan, H. Ismaili, J. C. Scaiano, ACS Catal. 2014, 4, 2530; j) Q.
Lefebvre, N. Hoffmann, M. Rueping, Chem. Commun. 2016, 52, 2493.
[5] For selected reviews on photo-redox catalysis, see: a) D. Ravelli, D.
Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2009, 38, 1999; b) T.
P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527; c) J. D.
Weaver, A., III Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011,
111, 1846; d) N. Rodríguez, L. J. Gooßen, Chem. Soc. Rev. 2011, 40,
5030; e) D. P. Hari, B. Kꢁnig, Chem. Commun. 2014, 50, 6688; g) C.
Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor, X. Liu, Chem. Soc. Rev.
2015, 44, 291; f) J. Xuan, Z.-G. Zhang, W.-J. Xiao, Angew. Chem., Int.
Ed. 2015, 54, 15632; g) N. Romero, D. Nicewicz, Chem. Rev. 2016,
116, 10075.
trifluoromethyl-α-aryl ketones synthesis through photocatalytic
radical 1,2-aryl migration. This catalyst system is tolerant of various
synthetically useful functional groups, including bromo, chloro,
fluoro, trifluoromethoxy, methoxy, and phenyl. Compared with the
previous established methods, this method, not requiring any strong
oxidants and transition-metal catalysts and using easily accessible
and relatively low cost starting materials, adds further to its
applications in organic synthesis.
Experimental Section
A flame-dried round bottom flask (25 mL) was equipped with
magnetic stir bar and charged with α,α-diaryl allylic alcohols 1
(0.145 mmol, 1.0 equiv), CF3SO2Na 2 (0.261 mmol, 1.8 equiv),
1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene
(4CzIPN)
(0.0029 mmol, 0.02 equiv), and DCE (7.5 mL). The reaction
mixture was degassed carefully by purging thoroughly with nitrogen
(with 0.5 mol % of oxygen) for half an hour, then irradiated by blue
LED (18 W) under a balloon nitrogen (with 0.5 mol % of oxygen)
atmosphere at room temperature until the starting material
disappeared from the TLC. After that, the reaction mixture was
directly concentrated under reduced pressure and the crude product
was purified by silica gel column chromatography to afford the
desired product.
[6]
a) M. Rueping, S. Zhu, R. M. Koenigs, Chem. Commun. 2011, 47,
8679; b) Y. Q. Zou, L. Q. Lu, L. Fu, N. J. Chang, J. Rong, J. R. Chen,
W. J. Xiao, Angew. Chem., Int. Ed. 2011, 50, 7171; c) D. P. Hari, T.
Hering, B. Kꢁnig, Org. Lett. 2012, 14, 5334; d) D. Hamilton, D. A.
Nicewicz, J. Am. Chem. Soc. 2012, 134, 18577; e) D. P. Hari, P.
Schroll. B. Kꢁnig, J. Am. Chem. Soc. 2012, 134, 2958; f) J. Grandjean,
D. Nicewicz, Angew. Chem., Int. Ed. 2013, 52, 3967; g) S. Zhu, M.
Rueping, Chem. Commun. 2012, 48, 11960; h) M. Rueping, C. Vila,
Org. Lett. 2013, 15, 2092; i) D. J. Wilger, N. J. Gesmundo, D. A.
Nicewicz, Chem. Sci. 2013, 4, 3160; j) A. U. Meyer, S. Jager, D. P.
Hari, B. Kꢁnig, Adv. Synth. Catal. 2015, 357, 2050; k) W. Yoo, T.
Tsukamoto, S. Kobayashi, Angew. Chem., Int. Ed. 2015, 54, 6587; l)
H. Yin, P. J. Carroll, B. C. Manor, J. M. Anna, E. J. Schelter, J. Am.
Chem. Soc. 2016, 138, 5984.
Acknowledgments
We thank the National Natural Science Foundation of China (No.
21502086, and No. 41575118), Natural Science Foundation of
Fujian Province (No. 2015J05028), Outstanding Youth Science
Foundation of Fujian Province (No. 2015J06009), and Program for
Excellent Talents of Fujian Province for financial support.
[7] a) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska, C. R. J.
Stephenson, J. Am. Chem. Soc. 2011, 133, 4160; b) S. H. Oh, Y. R.
Malpani, N. Ha, Y.-S. Jung, S. B. Han, Org. Lett. 2014, 16, 1310; c) R.
Tomita, Y. Yasu, T. Koike, M. Akita, Angew. Chem., Int. Ed. 2014,
53, 7144; d) A. Carboni, G. Dagousset, E. Magnier, G. Masson, Org.
Lett. 2014, 16, 1240; e) D. B. Bagal, G. Kachkovskyi, M. Knorn, T.
Rawner, B. M. Bhanage, O. Reiser, Angew. Chem., Int. Ed. 2015, 54,
6999; f) G. Dagousset, A. Carboni, E. Magnier, G. Masson, Org. Lett.
2014, 16, 4340; g) X.-L. Yu, J.-R. Chen, D.-Z. Chen, W.-J. Xiao,
Chem. Commun. 2016, 52, 8275.
[8] a) X. Liu, F. Xiong, X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem., Int.
Ed. 2013, 52, 6962; b) H. Egami, R. Shimizu, Y. Usui, M. Sodeoka,
Chem. Commun. 2013, 49, 7346; c) P. Xu, K. Hu, Z. Gu, Y. Cheng, C.
Zhu, Chem. Commun. 2015, 51, 7222; d) H.-L. Huang, H. Yan, G.-L.
Gao, C. Yang, W. Xia, Asian J. Org. Chem. 2015, 4, 674; e) S. Woo,
D. Kim, J. Fluorine Chem. 2015, 178, 214.
[9] Our previous studies on photoredox catalysis, see: a) S. Y. Cai, X. Y.
Zhao, X. B. Wang, Q. S. Liu, Z. G. Li, D. Z. Wang, Angew. Chem.,
Int. Ed. 2012, 51, 8050; b) S. Y. Cai, S. L. Zhang, Y. H. Zhao, D. Z.
Wang, Org. Lett. 2013, 15, 2660; c) S. Y. Cai, K. Yang, D. Z. Wang
Org. Lett. 2014, 16, 2606; d) S. Y. Cai, Y. Xu, D. Chen, L. Li, Q.
Chen, M. Huang, W. Weng, Org. Lett. 2016, 18, 2990; e) S. Y. Cai, D.
Chen, Y. Xu, W. Weng, L. Li, R. Zhang, M. Huang, Org. Biomol.
Chem. 2016, 14, 4205.
[10] a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature,
2012, 492, 234; b) J. Luo, X. Zhang, J. Zhang, ACS Catal. 2015, 5,
2250; c) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873; d) B. A. Vara, M.
Jouffroy, G. A. Molander, Chem. Sci. 2017, 8, 530; e) J. Luo, X.
Zhang, J. Lu, J. Zhang, ACS Catal. 2017, 7, 5062.
[1]
a) Filler, R.; Kobayashi, Y.; Yagupolskii, L. M. Organofluorine
Compounds in Medicinal Chemistry and Biomedical Applications;
Elsevier: Amsterdam, 1993; b) M. Schlosser, Angew. Chem., Int. Ed.
2006, 45, 5432; c) K. Muller; C. Faeh; F. Diederich, Science 2007,
317, 1881.
[2] For selected reviews for trifluoromethylation, see: a) S. Purser, P. R.
Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320; b)
O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475; c) M.
Cametti, B. Crousse, P. Metrangolo, R. Milani, G. Resnati, Chem. Soc.
Rev. 2012, 41, 31; d) A. Studer, Angew. Chem., Int. Ed. 2012, 51,
8950; e) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513; f) C. Ni,
M. Hu, J. Hu, Chem. Rev. 2015, 115, 765; g) X.-H. Xu, K. Matsuzaki,
N. Shibata, Chem. Rev. 2015, 115, 731; h) W.-Z. Weng, B. Zhang,
Chem. Eur. J. 2018, 10.1002/chem.201800004.
[3] For selected recent reports on catalytic trifluoromethylation of alkenes,
see: a) Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2012,
51, 9567; b) C. Feng, T.-P. Loh, Chem. Sci. 2012, 3, 3458; c) R. Zhu,
S. Buchwald, J. Am. Chem. Soc. 2012, 134, 12462; d) P. Janson, I.
Ghoneim, N. Ilchenko, K. Szabó, Org. Lett. 2012, 14, 2882. e) X. Wu,
L. Chu, F.-L. Qing, Angew. Chem., Int. Ed. 2013, 52, 2198; f) R.
Tomita, T. Koike, M. Akita, Angew. Chem., Int. Ed. 2015, 54, 12923;
g) F. Wang, D. Wang, X. Wan, L. Wu, P. Chen, G. Liu, J. Am. Chem.
Soc. 2016, 138, 15547; h) N. Noto, T. Koike, M. Akita, Chem. Sci.
2017, 8, 6375; i) K. Ye, G. Pombar, N. Fu, S. G. Sauer, I. Keresztes, S.
Lin, J. Am. Chem. Soc. 2018, 140, 2438.; j) B. Cui, H. Sun,Y. Xu, L.
Li, L. Duan, Y. Li, J. Org. Chem. 2018, 83, 6015; k) J. Liu, L. Li, L.
Yu, L. Tang, Q. Chen, S. Min, Adv. Synth. Catal. 2018,
10.1002/adsc.201800568.
[11] H. Sun, C. Yang, F. Gao, Z. Li, W. Xia, Org. Lett. 2013, 15, 624.
[12] C. S. Aureliano Antunes, M. Bietti, G. Ercolani, O. Lanzalunga, M.
Salamone, J. Org. Chem. 2005, 70, 3884.
[13] For the mechanistic proposal for benzophenone 5 formation, see the
Supporting Information.
[14] C. J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. Stephenson, J. Am.
Chem. Soc. 2012, 134, 8875.
[4]
a) X. Wang, L. Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132,
3648; b) Y. Ye, N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem.
Soc. 2010, 132, 14682; c) E. J. Cho, T. D. Senecal, T. Kinzel, Y.
4
This article is protected by copyright. All rights reserved.