Chemical Science
Page 6 of 6
EDGE ARTICLE
Chemical Science
and either [Rh] complex
I or III. Currently, we can not
Chem. Int. Ed., 2015, 54, 1312.
DOI: 10.1039/C5SC03103F
distinguish between the two possible mechanistic pathways
6
For recent reviews, see: (a) Dobereiner, G. E.; Crabtree, R. H.
Chem. Rev., 2010, 110, 681. (b) Pattabiraman, V. R.; Bode, J.
W. Nature, 2011, 480, 471. (c) Allen, C. L.; Williams, J. M. J.
Chem. Soc. Rev., 2011, 40, 3405. (d) Singh, C.; Kumar, V.;
and further mechanistic investigations are ongoing.14
Conclusions
Sharma, U.; Kumar, N.; Singh, B. Curr. Org. Synth., 2013, 10
,
241. (e) Crochet, P.; Cadierno, V. Top. Organomet. Chem.,
2014, 48, 81.
In conclusion, conditions have been developed for the
chemoselective oxidative amidation of allylic alcohols or
aldehydes, using styrene or acetone as hydrogen acceptors.
This methodology presents a general protocol for the synthesis
of amides, which is effective for both primary and secondary
alkyl/aryl amines. Current efforts are focusing on expanding
the scope of nucleophiles and developing asymmetric
conditions15 for the transformation.
7
8
9
For related NHC catalyzed amidation see: (a) Vora, H. U.;
Rovis, T. J. Am. Chem. Soc., 2007, 129, 13796. (b) Bode, J. W.;
Sohn, S. S. J. Am. Chem. Soc., 2007, 129, 13798. (c) Sarkar, S.
D.; Studer, A. Org. Lett., 2010, 12, 1992.
Formation of tertiary amides: (a) Chen, C.; Zhang, Y.; Hong, S.
H. J. Org. Chem., 2011, 76, 10005. (b) Srimani, D.; Balaraman,
E.; Hu, P.; Ben-David, Y.; Milstein, D. Adv. Synth. Catal., 2013,
355, 2525.
Transition metal-catalyzed functionalization of allylic alcohol:
(a) Hirai, K.; Takahashi, Y.; Ojima, I. Tetrahedron Letters,
1982, 23, 2491. (b) Watanabe, Y.; Tsuji, Y.; Ohsugi, Y.; Shida,
J. Bull. Chem. Soc. Jpn. 1983, 56, 2452.
Acknowledgements
10 Rh-catalyzed allylic alcohol isomerization: (a) Tanaka, K.; Fu,
G. C. J. Org. Chem., 2001, 66, 8177. (b) Tanaka, K.; Qiao, S.;
Tobisu, M.; Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc., 2000,
122, 9870. (c) Bergens, S. H.; Bosnich, B. J. Am. Chem. Soc.,
1991, 113, 958. (d) Tani, K. Pure Appl. Chem., 1985, 57, 1845.
11 Anilines have been demonstrated to undergo oxidative
amidation with heterogeneous gold catalysts, see reference
4k.
The authors would like to thank the University of Illinois,
Urbana-Champaign for their generous support.
Notes and references
1
(a) Zabicky, J. The Chemistry of Amides; Wiley-VCH: New
York, 1970. (b) Greenberg, A.; Breneman, C. M. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry
and Material Science. Wiley-VCH: New York, 2000. (c) Carey,
J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol.
12 See Supporting Information.
13 Amide formation using H2O as the oxygen atom source: (a)
Khusnutdinova, J. R.; Ben-David, Y.; Milstein, D. J. Am. Chem.
Soc. 2014, 136, 2998. (b) Gellrich, U.; Khusnutdinova, J. R.;
Chem. 2006, 4, 2337.
Leitus, G. M.; Milstein, D. J. Am. Chem. Soc. 2015, 137, 4851.
2
3
For a review: Valeur, E.; Bradley, M. Chem. Soc. Rev., 2009,
38, 606.
1
14 When the reaction is monitored by both H and 31P NMR no
Rh–H are observed. This suggests that either oxidative
(a) Coin, I.; Beyermann, M.; Bienert, M. Nature Protocols,
addition or
β-hydride elimination is between the turnover
2007, 2, 3247. (b) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.;
limiting step and the catalyst resting state if the reaction is
occurring through the Rh(I)/(III) or Rh(I) catalytic cycles,
respectively.
Humphrey, G. R.; Leazer, Jr. J. L.; Linderman, R. J.; Lorenz, K.;
Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y.
Green Chem, 2007,
From alcohols: (a) Naota, T.; Murahashi, S. I. Synlett, 1991
10, 693. (b) Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto,
K.; Yamaguchi, R. Org. Lett., 2004, , 2785. (c) Gunanathan,
9, 411.
15 Under standard condition, reaction of prochiral (E)-3-
phenylbut-2-en-1-ol with morpholine affords 1-morpholino-
3-phenylbutan-1-one in 86% yield and 3:1 er by using R-
BINAP as chiral ligand. For comparison, [((R)-BINAP)Rh]ClO4
catalyzes the asymmetric isomerization of (E)-3-phenylbut-2-
en-1-ol to afford the β-chiral aldehyde in 70% yield and 3.3:1
er. See reference 10d.
4
,
6
C.; Ben-David, Y.; Milstein, D. Science, 2007, 317, 790. (d)
Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007,
9
, 73. (e) Nordstrom, L. U.; Vogt, H. Madsen, R. J. Am. Chem.
Soc., 2008, 130, 17672. (f) Watson, A. J. A.; Maxwell, A. C.;
Williams, J. M. J. Org. Lett., 2009, 11, 2667. (g) Zweifel, T.;
Naubron, J.-V.; Grützmacher, H. Angew. Chem. Int. Ed., 2009,
48, 559. (h) Shimizu, K.-i.; Ohshima, K.; Satsuma, A. Chem.
Eur. J., 2009, 15, 9977. (i) Ghosh, S. C.; Muthaiah, S.; Zhang,
Y.; Xu, X.; Hong, S. H. Adv. Synth. Catal., 2009, 351, 2643. (j)
Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.; Hong. S. H.
Organometallics, 2010, 29, 1374. (k) Muthaiah, S.; Ghosh, S.
C.; Jee, J.-E.; Chen, C.; Zhang, J.; Hong, S. H. J. Org. Chem.,
2010, 75, 3002. (l) Dam, J. H.; Osztrovszky, G.; Nordstrom L.
U.; Madsen, R. Chem. Eur. J., 2010, 16, 6820. (m) Wang, Y.;
Zhu, D.; Tang, L.; Wang, S.; Wang, Z. Angew. Chem. Int. Ed.,
2011, 50, 8917.
5
From aldehydes: (a) Tamaru, Y.; Yamada, Y.; Yoshida, Z.-i.
Synthesis, 1983, 474. (b) Tillack, A.; Rudloff, I.; Beller, M. Eur.
J. Org. Chem., 2001, 523. (c) Yoo, W.-J.; Li, C.-J. J. Am. Chem.
Soc., 2006, 128, 13064. (d) Chang, J. W. W.; Chan, P. W. H.
Angew. Chem. Int. Ed., 2008, 47, 1138. (e) Seo, S. Y.; Marks,
T. J. Org. Lett., 2008, 10, 317. (f) ref 4i. (g) Ghosh, S. C.;
Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Chai, C. L. L.; Chen,
A.; J. Org. Chem., 2012, 77, 8007. (h) Li, Y.; Jia, F.; Li, Z. Chem.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins