by a combination of hydrogen bonding, p–p stacking and van
der Waals interaction. We envision that this zipper system
might serve as a good scaffold for the alignment and long-
range ordering of functional entities as part of novel materials.
Moreover, the abundant noncovalent interactions found in
this supramolecular system could make it an ideal model for
theoretical studies of cooperativity among multiple interac-
tions that provide insight into understanding the polymeric
zipper structure of DNA.
Jiang and Z.-T. Li, J. Am. Chem. Soc., 2004, 126, 12386–12394; (d)
X. Zhao, X.-Z. Wang, X.-K. Jiang, Y.-Q. Chen, Z.-T. Li and G.-J.
Chen, J. Am. Chem. Soc., 2003, 125, 15128–15139.
6 See ESIw.
7 C. S. Wilcox, in Frontiers in Supramolecular Organic Chemistry and
Photochemistry, ed. H.-J. Schneider and H. Durr, VCH, New
York, 1991, p. 123.
8 For nomenclature, see: (a) M. C. Etter, Acc. Chem. Res., 1990, 23,
120–126; (b) M. C. Etter, J. C. Macdonald and J. Bernstein, Acta
Crystallogr., Sect. B: Struct. Sci., 1990, B46, 256–262; (c) J.
Bernstein, R. E. Davis, L. Shimoni and N.-L. Chang, Angew.
Chem., Int. Ed. Engl., 1995, 34, 1555–1573.
We thank the National Natural Science Foundation of
China and the Chinese Academy of Sciences for financial
support.
9 T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48–76.
10 (a) G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311–
2327; (b) G. R. Desiraju, Chem. Commun., 1997, 1475–1482.
11 (a) S. Yagai, T. Iwashima, T. Karatsu and A. Kitamura, Chem.
Commun., 2004, 1114–1115; (b) J.-M. Lehn, M. Mascal, A. DeCian
and J. Fischer, J. Chem. Soc., Perkin. Trans. 2, 1992, 461–467.
12 See more examples of hydrogen-bonded polymeric structures: (a)
L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma,
Chem. Rev., 2001, 101, 4071–4097; (b) R. P. Sijbesma, F. H. Beijer,
L. Brunsveld, B. J. B. Folmer, J. H. K. K Hirschberg, R. F. M.
Lange, J. K. L. Lowe and E. W. Meijer, Science, 1997, 278, 1601–
1604; (c) S. J. Kim, M.-G. Jo, J. Y. Lee and B. H. Kim, Org. Lett.,
2004, 6, 1963–1966; (d) Y. Du, C. J. Creighton, B. A. Tounge and
References
z Crystal data for 1: C17H26N2O3, Mw ¼ 306.40, crystal size: 0.34 ꢁ
0.30 ꢁ 0.26 mm3, crystal system: monoclinic, space group: P21/c, a ¼
8.329(2) A, b ¼ 23.399(6) A, c ¼ 9.458(3) A, b ¼ 108.075(9)1, U ¼
1752.3(8) A3, Z ¼ 4, Dc ¼ 1.161 Mg mꢀ3, T ¼ 293(2) K, m ¼ 0.080
mmꢀ1, 9000 reflections measured, 3090 unique (Rint ¼ 0.0270), R1
¼
0.0497, wR2 ¼ 0.1166. Crystal data for 2: C28H46N4O6, Mw ¼ 534.69,
crystal size: 0.20 ꢁ 0.18 ꢁ 0.14 mm3, crystal system: monoclinic, space
group: C2/c, a ¼ 28.56(2) A, b ¼ 14.706(10) A, c ¼ 15.859(11) A, b ¼
113.10(2)1, U ¼ 6127(8) A3, Z ¼ 8, Dc ¼ 1.159 Mg mꢀ3, T ¼ 293(2) K,
A. B. Reitz, Org. Lett., 2004, 6, 309–312; (e) C. Pe
Rodrıguez, C. Foces-Foces, N. Perez-Hernandez, R. Pe
D. Martın, Org. Lett., 2003, 5, 641–644; (f) G. Blay, I. Ferna
J. R. Pedro, R. Ruiz-Garcıa, M. C. Munoz, J. Cano and R.
´
rez, M. L.
rez and J.
ndez,
´
´
´
´
´
´
´
m ¼ 0.081 mmꢀ1, 15422 reflections measured, 5399 unique (Rint
¼
Carrasco, Eur. J. Org. Chem., 2003, 1627–1630; (g) M. Kotera,
J.-M. Lehn and J.-P. Vigneron, J. Chem. Soc., Chem. Commun.,
1994, 197–199; (h) L. Sanchez, M. T. Rispens and J. C. Hummelen,
´
0.1948), R1 ¼ 0.1250, wR2 ¼ 0.2706. Numerous attempts to grow a
better single crystal of 2 for X-ray analysis were unsuccessful. The
disorder of the two octyl chains may account for the relatively high R
factor. CCDC reference numbers 293557 and 293558. For crystal-
lographic data in CIF or other electronic format see DOI: 10.1039/
b515559b
Angew. Chem., Int. Ed., 2002, 41, 838–840; (i) J. H. K. K.
Hirschberg, L. Brunsveld, A. Ramzi, J. A. J. M. Vekemans, R.
P. Sijbesma and E. W. Meijer, Nature, 2000, 407, 167–170; (j) R.
M. Williams and A. Kwast, J. Org. Chem., 1988, 53, 5787–5789.
13 Selected examples of multiple hydrogen-bonded systems: (a) R. P.
Sijbesma and E. W. Meijer, Chem. Commun., 2003, 5–16, and
references therein; (b) L. J. Prins, D. N. Reinhoudt and P. Timmer-
man, Angew. Chem., Int. Ed., 2001, 40, 2382–2426, and references
therein; (c) F. H. Beijer, R. P. Sijbesma, H. Kooijman, A. L. Spek
and E. W. Meijer, J. Am. Chem. Soc., 1998, 120, 6761–6769; (d) F.
H. Beijer, H. Kooijman, A. L. Spek, R. P. Sijbesma and E. W.
Meijer, Angew. Chem., Int. Ed., 1998, 37, 75–78; (e) P. S. Corbin
and S. C. Zimmerman, J. Am. Chem. Soc., 1998, 120, 9710–9711;
(f) A. P. Davis, S. M. Draper, G. Dunnea and P. Ashtonb, Chem.
Commun., 1999, 2265–2266; (g) C. Schmuck, Chem.–Eur. J., 2000,
6, 709–718; (h) H. Zeng, X. Yang, A. L. Brown, S. Martinovic, R.
D. Smith and B. Gong, Chem. Commun., 2003, 1556–1557; (i) P. K.
Baruah, R. Gonnade, U. D. Phalgune and G. J. Sanjayan, J. Org.
Chem., 2005, 70, 6461–6467; (j) P. Prabhakaran, V. G. Puranik and
G. J Sanjayan, J. Org. Chem., 2005, 70, 10067–10072.
14 C. B. Martin, H. R. Mulla, P. G. Willis and A. Cammers-Good-
win, J. Org. Chem., 1999, 64, 7802–7806.
15 D. Guo, R. P. Sijbesma and H. Zuilhof, Org. Lett., 2004, 6, 3667–
3670.
16 Curtis and Sharma et al. have recently reported similar examples
with interdigitated side chains in crystallographic structures. (a) M.
D. Curtis, J. Cao and J. W. Kampf, J. Am. Chem. Soc., 2004, 126,
4318–4328; (b) C. V. K. Sharma, C. B. Bauer, R. D. Rogers and M.
J. Zaworotko, Chem. Commun., 1997, 1559–1560.
1 S. Keinan, M. A. Ratner and T. J. Marks, Chem. Phys. Lett., 2004,
392, 291–296.
2 W. Saenger, The Principles of Nucleic Acid Structure, Springer
Verlag, Berlin, 1984.
3 Examples of molecular zippers based on oligomers: (a) C. A.
Hunter, P. S. Jones, P. M. N. Tiger and S. Tomas, Chem.
Commun., 2003, 1642–1643; (b) A. P. Bisson, F. J. Carver, D. S.
Eggleston, R. C. Haltiwanger, C. A. Hunter, D. L. Livingstone, J.
F. McCabe, C. Rotger and A. E. Rowan, J. Am. Chem. Soc., 2000,
122, 8856–8868; (c) A. P. Bisson, F. J. Carver, C. A. Hunter and J.
P. Waltho, J. Am. Chem. Soc., 1994, 116, 10292–10293; (d) X.
Zhao, M.-X. Jia, X.-K. Jiang, L.-Z. Wu, Z.-T. Li and G.-J. Chen,
J. Org. Chem., 2004, 69, 270–279; (e) Q.-Z. Zhou, X.-K. Jiang, X.-
B. Shao, G.-J. Chen, M.-X. Jia and Z.-T. Li, Org. Lett., 2003, 5,
1955–1958.
4 Examples of molecular zippers based on inorganic–organic hy-
brids: (a) M. Barboiu, E. Petit and G. Vaughan, Chem.–Eur. J.,
2004, 10, 2263–2270; (b) X.-M. Chen and G.-F. Liu, Chem.–Eur.
J., 2002, 8, 4811–4817; (c) Y.-Q. Zheng, J. Sun and J.-L. Lin, Z.
Anorg. Allg. Chem., 2000, 626, 1501–1504.
5 (a) J. S. Nowick, Acc. Chem. Res., 1999, 32, 287–296; (b) J. S.
Nowick and D. M. Chung, Angew. Chem., Int. Ed., 2003, 42, 1765–
1768; (c) J.-L. Hou, X.-B. Shao, G.-J. Chen, Y.-X. Zhou, X.-K.
ꢃc
This journal is the Royal Society of Chemistry the Centre National de la Recherche Scientifique 2006
142 | New J. Chem., 2006, 30, 140–142