1940
Russ.Chem.Bull., Int.Ed., Vol. 64, No. 8, August, 2015
Lyubimtsev et al.
1,3ꢀdiiminoisoindoline, the quantitative characteristics of
the processes under consideration are not reported in the
literature. In this connection, we studied kinetics of the
reactions of 3ꢀiminoꢀ1ꢀmethoxyisoindolenine and 1,3ꢀdiꢀ
iminoisoindoline with pꢀtoluidine in DMF. The spectroꢀ
photometric method with the detection of the concentraꢀ
tion growth of formed 3ꢀiminoꢀ1ꢀ(Nꢀpꢀtolylimino)isoꢀ
indoline at the absorption maximum (380 nm) showed
that the rate constant of the reaction of 3ꢀiminoꢀ1ꢀmethꢀ
oxyisoindolenine with pꢀtoluidine is 4.5 times higher than
the rate constant of the reaction of 1,3ꢀdiiminoisoindoline
with the same amine (Fig. 5). This fact confirms the exꢀ
perimental data concerning the reactivity of compounds
in the case of reactions with nucleophiles (amines, amꢀ
monia), as well as the conclusions drawn based on the
results of quantum chemical calculations.
In conclusion, the theoretical and experimental studies
of the reactions of phthalonitrile and its substituted derivꢀ
atives with sodium methoxide in methanol made it possiꢀ
ble to suggest the most plausible mechanism for this reacꢀ
tion. Considering this mechanism, we evaluated the inꢀ
fluence of the nature and position of substituent in the
phthalonitrile molecule on the reaction rate and selectivity.
For the first time, kinetic measurements show the higher
reactivity of 4ꢀnitrophthalonitrile in the reaction with soꢀ
dium methoxide in methanol as compared to phthaloꢀ
nitrile (4ꢀaminophthalonitrile considerably slower forms
the corresponding methoxyiminoisoindolenines than
phthalonitrile and 4ꢀnitrophthalonitrile). Due to the speꢀ
cific ability of iminoisoindoline methoxy derivatives to
react with amines without liberation of ammonia, we studꢀ
ied the regioisomeric composition of substituted iminoꢀ
methoxyisoindolenines based on the results of the analysis
of the products of their reaction with pꢀtoluidine. Using
quantum chemical calculations and experimental kinetic
studies, we showed that 3ꢀiminoꢀ1ꢀmethoxyisoindolenine
is more active than 1,3ꢀdiiminoisoindoline in the reacꢀ
tions with nucleophilic agents (ammonia, pꢀtoluidine).
This work was financially supported by the Ministry of
Education and Science of the Russian Federation (Project
No. 795) and the Russian Foundation for Basic Research
(Project No. 13ꢀGꢀRFꢀ13).
References
2. P. Erk, H. Engelsberg, in The Porphyrin Handbook, Eds K. M.
Kadish, K. M. Smith, R. Guilard, Elsevier Science, San
Diego, 2003, Vol. 19, 105.
3. G. Löbbert, Phthalocyanines, Ullmann´s Encyclopedia of
Industrial Chemistry, Vol. A20, VCH Publ., Weinheim, 1992,
p. 213; D. Wöhrle, G. Schnurpfeil, S. Makarov, O. Suvoroꢀ
va, Chem. Unserer Zeit, 2012, 46, 12.
4. H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res., 2001, 34, 359.
5. Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang,
Y. Liu, D. Zhu, Adv. Mater., 2006, 18, 65.
6. K. S. Karimov, I. Qazi, T. A. Khan, P. H. Draper, F. A.
Khalid, M. MahroofꢀTahir, Environ Monit Assess, 2008,
141, 323.
7. M. Bouvet, Anal. Bioanal. Chem., 2006, 384, 366.
8. A. Cole, R. J. McIlroy, S. C. Thorpe, M. J. Cook, J. McMurꢀ
do, A. K. Ray, Sensors and Actuators B, May 1993, Vol. 13, 416.
9. C. G. Claessens, U. Hahn, T. Torres, The Chemical Record,
2008, 8, 75.
10. Gema de la Torre, P. Vбzquez, F. AgullуꢀLуpez, T. Torres,
Chem. Rev., 2004, 104, 3723.
11. M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau,
M. Zawadzka, O. B. Locos, E. M. Ni, Mhuircheartaigh Adv.
Mater., 2007, 19, 2737.
12. S. Venugopal Rao, N. Venkatram, L. Giribabu, D. Narayana
Rao, J. Appl. Phys., 2009, 053109, 105.
13. D. Dini, G. Ying Yang, M. Hanack, J. Chem. Phys., 2003,
4857, 119.
14. C. Colomban, E. V. Kudrik, P. Afanasiev, A. B. Sorokin,
J. Am. Chem. Soc., 2014, 136, 11321.
15. Y. Zorlu, F. Dumoulin, D. Bouchu, V. Ahsen, D. Lafont,
Tetrahedron Lett., 2010, 51, 6615.
ln(C/C0)
16. J.ꢀP. Taquet, C. Frochot, V. Manneville, M. BarberiꢀHeyob,
Curr. Med. Chem., 2007, 14, 1673.
17. X.ꢀF. Zhang, Y. Lin, W. Guo, J. Zhu, Spectrochim. Acta. Part A:
Mol. Biomol. Spectros., 2014, 133, 752.
0.03
1
18. C. Göl, M. Malkoç, S. Ye ilot, M. Durmu , Dyes and Pigꢀ
ments, 2014, 111, 81.
0.02
19. R. Heukers, P. M. P. van Bergen en Henegouwen, S. Oliveira,
Nanomedicine: Nanotechnology, Biology, and Medicine, 2014,
10, 1441.
20. Z. Chen, P. Xu, J. Chen, H. Chen, P. Hu, X. Chen, L. Lin,
Y. Huang, K. Zheng, S. Zhou, R. Li, S. Chen, J. Liu, J. Xue,
M. Huang, Acta Biomaterialia, 2014, 10, 4257.
21. L. M. O. Lourenço, P. M. R. Pereira, E. Maciel, M. Va´lega,
F. M. J. Domingues, M. R. M. Domingues, M. G. P. M. S.
Neves, J. A. S. Cavaleiro, R. Fernandes, J. P. C. Tome´,
Chem. Commun., 2014, 50, 8363.
0.01
2
5
10
15
20
25
30
35 t/min
Fig. 5. Kinetic curves for the reactions of 3ꢀiminoꢀ1ꢀmethoxyꢀ
isoindolenine (1) and 1,3ꢀdiiminoisoindoline (2) with pꢀtoluꢀ
idine; k1 = 8.64•10–4 min–1, k2 = 1.92•10–4 min–1
22. J. D. Huang, P. C. Lo, Y. M. Chen, J. C. Lai, W. P. Fong,
D. K. P. Ng, J. Inorg. Biochem., 2006, 100, 946.
.