J.-M. Na6arre et al. / Tetrahedron Letters 44 (2003) 2199–2202
2201
5. (a) Walker, J. A., II; Liu, W.; Wise, D. S.; Drach, J. C.;
Townsend, L. B. J. Med. Chem. 1998, 41, 1236–1241; (b)
Franchetti, P.; Marchetti, S.; Cappellaci, L.; Jayaram, H.
N.; Yalowitz, J. A.; Goldstein, B. M.; Barascut, J.-L.;
Dukhan, D.; Imbach, J.-L.; Grifantini, M. J. Med. Chem.
2000, 43, 1264–1270.
6. (a) Von Krosigk, U.; Benner, S. A. J. Am. Chem. Soc.
1995, 117, 5361–5362; (b) Chen, D. L.; McLaughlin, L.
W. J. Org. Chem. 2000, 65, 7468–7474; (c) Berger, M.;
Luzzi, S. D.; Henry, A. A.; Romesberg, F. E. J. Am.
Chem. Soc. 2002, 124, 1222–1226; (d) Guianvarc’h, D.;
Fourrey, J.-L.; Maurisse, R.; Sun, J. S.; Benhida, R. Org.
Lett. 2002, 4, 4209–4212.
7. (a) Tanaka, K.; Shionoya, M. J. Org. Chem. 1999, 64,
5002–5003; (b) Wenska, G.; Skalski, B.; Gdaniec, Z.;
Adamiak, R. W.; Matulic-Adamic, J.; Beigelman, L. J.
Photochem. Photobio. 2000, 133, 169–176; (c) Dzantiev,
L.; Alekseyev, Y. O.; Morales, J. C.; Kool, E. T.;
Romano, L. J. Biochemistry 2001, 40, 3215–3221.
8. (a) Trost, B. M.; Kallander, L. S. J. Org. Chem. 1999, 64,
5427–5435; (b) Franchetti, P.; Cappellaci, L.; Marchetti,
S.; Martini, C.; Costa, B.; Varani, K.; Borea, P. A.;
Grifantini, M. Bioorg. Med. Chem. 2000, 8, 2367–2373;
(c) Ramasamy, K. S.; Bandaru, R.; Averett, D. J. Org.
Chem. 2000, 65, 5849–5851; (d) Franchetti, P.; Marchetti,
S.; Cappellaci, L.; Yalowitz, J. A.; Jayaram, H. N.;
Goldstein, B. M.; Grifantini, M. Bioorg. Med. Chem.
Lett. 2001, 11, 67–69; (e) Araki, L.; Harusawa, S.;
Fukuda, M.; Kurihara, T. Heterocycles 2001, 55, 1907–
1917.
Scheme 3. Felkin–Anh model for the reduction step.
Acidic treatment of both 4aa, 5aa and 4ba, 5ba
afforded the free a-C-nucleosides 6aa and 6ba, respec-
tively (93%). Importantly, epimerization of the C1%-
stereocenter in 4 and/or 5 was not observed after acidic
(p-TSA or H2SO4) treatment.15 In the same way, the
1/1 diastereomeric mixtures of diols 3a,b (R/S) result-
ing from NaBH4 reduction of 2a,b were converted to
their respective free C-nucleosides 6a,b, isolated as an
equimolar mixture of a and b anomers.
In summary, we have described a short, stereoselective
and efficient synthesis of a-(2-aminothiazolyl)-C-
nucleosides. The sequential cyclization–cleavage could
be performed in one-pot and high yield, making the
methodology quite attractive. This process also toler-
ates other sensitive functional groups and allows con-
ventional
post-synthetic
modifications.
Further
investigations aimed at the synthesis of the b anomers
following a chelation-based stereocontrolled process
from the same intermediates, are in progress and will be
reported in due course.
9. (a) Gudmundsson, K. S.; Drach, J. C.; Townsend, L. B.
J. Org. Chem. 1997, 62, 3453–3459; (b) Matulic-Adamic,
J.; Beigelman, L. Tetrahedron Lett. 1997, 38, 203–206; (c)
Sollogoub, M.; Fox, K. R.; Powers, V. E. C.; Brown, T.
Tetrahedron Lett. 2002, 43, 3121–3123.
Acknowledgements
10. (a) Guianvarc’h, D.; Benhida, R.; Fourrey, J.-L. Tetra-
hedron Lett. 2001, 42, 647–650; (b) Guianvarc’h, D.;
Fourrey, J.-L.; Tran Huu Dau, M.-E.; Gue´rineau, V.;
Benhida, R. J. Org. Chem. 2002, 67, 3724–3732.
11. The N,N-Boc,Me-aminothiazole was obtained in quanti-
tative yield from Boc-aminothiazole (NaH, DMF, MeI).
We failed to prepare the di-Boc protected aminothiazole
by using standard conditions (low yields). However, when
the N,N-Benzyl,Boc-aminothiazole was used in the con-
densation step with lactone 1, the hemiacetal adduct was
obtained in low yield, due to the observed side products
resulting from the alkylation at the benzylic position
(-CH2Ph).
We thank Dr. P. Vierling for his interest to this work
and CNRS for financial support, after our recent mov-
ing from Gif-sur-Yvette (ICSN) to Universite´ de Nice-
Sophia Antipolis.
References
1. For reviews on the chemistry, biochemistry, and synthesis
of C-nucleoside analogues, see: (a) Hacksell, U.; Daves,
G. D., Jr. Prog. Med. Chem. 1985, 22, 1–65; (c) Postema,
M. H. D. Tetrahedron 1992, 48, 8545–8599; (d) Watan-
abe, K. A. Chemistry of Nucleosides and Nucleotides;
Townsend, L. B., Ed.; Plenum Press: New York, 1994;
Vol. 3, pp. 421–535; (e) Jaramillo, C.; Knapp, S. Synthe-
sis 1994, 1–20; (f) Togo, H.; He, W.; Waki, Y.;
Yokoyama, M. Synlett 1998, 700–716.
1
12. 2a (major diastereomer): H NMR (200 MHz, CDCl3) l
t
1.06 (s, 9H, Bu), 1.33 (s, 3H, CH3), 1.44 (s, 3H, CH3),
1.61 (s, 9H, Boc), 2.82 (br s, 1H, OH), 3.72–3.95 (m, 3H,
H4%, 2H5%), 4.64 (t, J=5.8 Hz, H3%), 4.96 (d, 1H, J=5.5
Hz, H2%), 7.31–7.52 (m, 6H, H–Ar), 7.60–7.80 (m, 4H,
H–Ar), 8.41 (s, 1H). 13C NMR (50 MHz, CDCl3) l 19.37,
26.10, 26.81, 26.92, 27.09, 28.31, 64.79, 72.80, 77.08,
81.16, 83.28, 111.34, 127.69, 127.83, 127.92, 128.05,
129.86, 130.10, 130.21, 133.08, 133.18, 135.52, 135.67,
146.22, 152.28, 166.20. MS (ESI+) m/z=627 (MH+). Rf=
0.70 (hexane/AcOEt: 50/50).
2. Franchetti, P.; Cappellacci, L.; Grifantini, M. Farmaco
1996, 51, 457–469.
3. Review: Dymock, B. W.; Jones, P. S.; Wilson, F. X.
Antiviral Chem. Chemother. 2000, 11, 79–96.
4. De Bernardo, S.; Weigele, M. J. Org. Chem. 1976, 41,
287–290 and references cited therein. Recent examples:
(a) Popsavin, M.; Torovic, L.; Spaic, S.; Stankov, S.;
Popsavin, V. Tetrahedron Lett. 2000, 41, 5737–5740; (b)
Manferdini, M.; Morelli, C. F.; Veronese, A. C. Tetra-
hedron 2002, 58, 1005–1010.
1
2b (major diastereomer): H NMR (200 MHz, CDCl3) l
t
1.06 (s, 9H, Bu), 1.34 (s, 3H, CH3), 1.44 (s, 3H, CH3),
1.60 (s, 9H, Boc), 2.90 (br s, 1H, OH), 3.60 (s, 3H, CH3),
3.60–3.80 (m, 3H, H4%, 2H5%), 4.58 (t, 1H, J=5.8 Hz,