Pe´rez-Prieto et al.
On the other hand, molar absorption coefficients of BT ketyl
radical (BTH) were also determined by a comparative method,
using two solutions with the same absorbance (0.3) at 355
nm: BP in MeCN and BT containing indole (4 × 10-4 M) in
dichloromethane (ca. 95% of BT triplet quenching). The
quantum yield for the formation of indolyl radical (φIn) was
calculated by using eq 6:
4-[hydroxy(phenyl)thien-2-ylmethyl]phenol (3), and [phenyl-
(thien-2-yl)]methylidencyclohexa-2,5-dien-1-one (4) (4 mg, 1.4%
in weight).
(b) A degassed acetonitrile solution of BT (188 mg, 1 mmol)
and phenol (94 mg, 1 mmol) in a Pyrex tube was irradiated
for 8 h with a 125-W medium-pressure mercury lamp inside a
quartz immersion well, under continuous magnetic stirring.
Addition of 10 drops of concentrated HCl led to the precipita-
tion of a solid (180 mg) which was filtered and chromato-
graphed (hexane/ethyl acetate, 10/1) to give pinacolone 2 (50
mg, 17.8%) and BT. On the other hand, the filtrate was
evaporated and column-chromatographed (dichloromethane/
hexane, 10/1) to give pinacolone 2 (6 mg, 2.2%), BT and (4-
hydroxyphenyl)-phenyl-(2-thienyl)methane (5, 2 mg, 0.9%).
BP
In
BP
In
φIn ) φisc × ∆A460 × ꢀ525BP/∆A525 × ꢀ460
(6)
where ∆A460 and ꢀ460 (850 M-1 cm-1) are the net absorbance
and the molar absorption coefficient of In radical at 460 nm.
It was assumed that BTH radical does not absorb at 460 nm.
Thus, for φIn a value of ca. 0.95 in dichloromethane was
calculated. Then, since φIn ) φ BTH, eq 7 allowed for the
calculation of the molar absorption coefficients of BTH radical:
In
In
1
1a : H NMR (CDCl3): δ 3.20 (s, 2 H), 6.82-6.86 (m, 2H),
6.94 (bb, 2H), 7.04-7.20 (m, 8H), 7.25-7.28 (m, 4H). 13C NMR
(CDCl3): δ 82.1 (s), 124.9 (d), 125.4 (d), 126.1 (d), 126.4 (d),
126.6 (d), 126.7 (d), 140.8 (s), 147.3 (s).
× ꢀ525BP/∆A525 × ꢀ580
1b: H NMR (CDCl3): δ 3.36 (s, 2 H), 6.82-6.84 (m, 4H),
BP
(BTH+In)
BP
(BTH+In)
1
φBTH ) φisc × ∆A580
7.13-7.17 (m, 8H), 7.27-7.30 (m, 4H). 13C NMR (CDCl3): δ
82.3 (s), 124.6 (d), 125.5 (d), 126.1 (d), 126.2 (d), 126.8 (d), 127.8
(d), 140.1 (s), 147.3 (s).
(7)
where ∆A580 value refers to the net absorbance of the ketyl
and indolyl radicals at 580 nm. Thus, the BTH molar absorp-
tion coefficient was found to be ca. 2100 M-1 cm-1 at 580 nm.
By the same methodology following eq 8, a value of ca. 0.95
was calculated for φBTH in a dichloromethane solution of BT
containing 4 × 10-3 M phenol (ca. 95% of BT triplet quench-
ing):
2: 1H NMR (CDCl3): δ 6.65 (dd, J 1 ) 3.6, J 2 ) 1.1 Hz, 2H),
6.83 (dd, J 1 ) 5.1, J 2 ) 3.6 Hz, 2H), 7.14 7.21 (m, 9H), 7.32 (t,
J ) 7.4, 1H), 7.55 (d, 2H, J ) 7.4 Hz, 2H). 13C NMR (CDCl3):
δ 64.3 (s), 125.0 (d), 125.3 (d), 126.7 (d), 126.8 (d), 127.2 (d),
128.0 (d), 128.1 (d), 129.9 (d), 131.1 (d), 135.9 (s), 142.8 (s),
146.5 (s), 196.5 (s). MS m/z 360 (M+ 89), 283 (21), 255 (100),
221 (36).
3: 1H NMR (CDCl3): δ 2.85 (s, 1H), 5.05 (s, 1H), 6.68 (d,
J ) 3.3 Hz, 1H), 6.76 (d, J ) 8.4 Hz, 2H), 6.91 (dd, J 1 ) 5.1,
J 2 ) 3.6 Hz, 1H), 7.19-7.32 (m, 8H).
BP
(BTH)
BP
(BTH)
φBTH ) φisc × ∆A580
× ꢀ525BP/∆A525 × ꢀ580
(8)
In this case, ∆A580 refers only to the BT ketyl radicals since
phenoxy radicals have no absorption at this wavelength.
Com p u ta tion a l Meth od s. Density functional theory38
calculations have been carried out using the B3LYP or
UB3LYP39 exchange-correlation functional, together with the
standard 6-31G* basis set.40 The geometry optimizations were
carried out using the Berny analytical gradient optimization
method.41 For minimized triplet states, the UB3LYP wave
functions showed no spin contamination ( s2 ca. 2.0). A recent
investigation of Z/E isomerization of polyenes has shown that
DFT methods (UB3LYP/6-31G**) give relaxed triplet energies
that are close to experimental values and compare well with
results from high level ab initio methods.42 Atomic charges
were obtained using the natural bond orbital (NBO) method.43
All calculations were carried out with the Gaussian 98 suite
of programs.44
La m p Ir r a d ia tion of 2-Ben zoylth iop h en e in th e P r es-
en ce of P h en ol. (a) A degassed acetonitrile solution of BT
(188 mg, 1 mmol) and phenol (94 mg, 1 mmol) in a Pyrex tube
was irradiated for 27 h with a 125-W medium-pressure
mercury lamp inside a quartz immersion well, under continu-
ous magnetic stirring. After evaporation of the solvent, the
residue was chromatographed in a silica gel column (hexane/
ethyl acetate, 10/1) and then submitted to semipreparative
HPLC, to give 2-benzoylthiophene (18 mg, 6.4%), 1,2-diphenyl-
1,2-dithien-2-ylethane-1,2-diol (1a and 1b ) (33 mg, 11.8%),
4: 1H NMR (CDCl3): δ 6.35 (dd, J 1 ) 9.3, J 2 ) 2.1 Hz, 1H),
6.48 (dd, J 1 ) 10.0, J 2 ) 2.1 Hz, 1H), 7.09-7.15 (m, 2H), 7.20-
7.22 (m, 1H), 7.27 (d, J ) 6.8 Hz, 2H), 7.39-7.46 (m, 3H), 7.62
(dd, J 1 ) 5.1, J 2 ) 1.1 Hz, 1H), 7.77 (dd, J 1 ) 10.0, J 2 ) 2.7
Hz, 1H). MS m/z 264 (M+ 100), 235 (59), 202 (29). HRMS Calcd
for C17H12OS: 264.0609. Found: 264.0716
5: 1H NMR (CDCl3): δ 4.57 (s, 1H), 5.55 (s, 1H), 6.60-6.61
(m, 1H), 6.70 (d, J ) 8.7 Hz, 2H), 6.86 (dd, J 1 ) 5.1, J 2 ) 3.6
Hz, 1H), 7.01 (d, J ) 8.7 Hz, 2H), 7.12-7.15 (m, 3H), 7.20-
7.23 (m, 2H). MS m/z 266 (M+ 100), 249 (6), 189 (56), 115 (6).
HRMS Calcd for C17H14OS: 266.0765. Found: 266.0753.
La m p Ir r a d ia tion of 2-Ben zoylth iop h en e in th e P r es-
en ce of In d ole. A degassed acetonitrile solution of BT (188
mg, 1 mmol) and indole (117 mg, 1 mmol) in a Pyrex tube was
irradiated for 100 h with a 125-W medium-pressure mercury
lamp inside a quartz immersion well, under continuous
magnetic stirring. After evaporation of the solvent, the residue
was chromatographed in a silica gel column (hexane/ethyl
acetate, 10/1) and then submitted to semipreparative HPLC,
to give indole (22 mg, 7.2%), 1,2-diphenyl-1,2-dithien-2-yl-
ethane-1,2-diol (1a and 1b) (17.5 mg, 5.8%), 2-benzoylth-
iophene (84 mg, 27.7%), and [5-(1H-indol-3-yl)thien-2-yl)]-
(phenyl)methanone (6) (8.5 mg, 2.8%).
6: 1H NMR (CDCl3): 7.22-7.24 (m, 2H), 7.28 (d, J ) 3.9
Hz, 1H), 7.36-7.53 (m, 4H), 7.55 (d, J ) 2.8 Hz, 1H), 7.58 (d,
J ) 3.9 Hz, 1H), 7.82 (d, J ) 8.5 Hz, 2H), 7.97-8.00 (m, 1H),
8.45 (bb, 1H). 13C NMR (CDCl3): δ 111.9 (s), 112.1 (d), 120.4
(38) (a) Parr, R. G.; Yang, W. Density Functional Theory of Atoms
and Molecules; Oxford University Press: New York, 1989. (b) Ziegler,
T. Chem. Rev. 1991, 91, 651.
(39) (a) Becke, A. D. J . Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(40) Hehre, W. J .; Radom, L.; Schleyer, P. v. R.; Pople, J . A. Ab initio
Molecular Orbital Theory; Wiley: New York, 1986.
(41) (a) Schlegel, H. B. J . Comput. Chem. 1982, 3, 214. (b) Schlegel,
H. B. Geometry Optimization on Potential Energy Surface. In Modern
Electronic Structure Theory; World Scientific Publishing: Singapore,
1994.
(42) (a) Brink, M.; J onson, H.; Ottonson, C.-H. J . Phys. Chem. A
1998, 102, 6513. (b) Abu-Hasanayn, F.; Herstroeter, W. G. J . Phys.
Chem. Phys. A 2001, 105, 1214.
(44) Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J . R.; Zakrzewski, V. G.; Montgomery, J . A.,
J r.; Stratmann, R. E.; Burant, J . C.; Dapprich, S.; Millam, J . M.;
Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J .;
Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo,
C.; Clifford, S.; Ochterski, J .; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J . B.; Cioslowski, J .; Ortiz, J . V.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J .; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; J ohnson, B. G.; Chen,
W.; Wong, M. W.; Andres, J . L.; Head-Gordon, M.; Replogle, E. S.;
Pople, J . A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA,
1998.
(43) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J . Chem. Phys. 1985,
83, 735.
5112 J . Org. Chem., Vol. 68, No. 13, 2003