2354
P. Bisseret et al. / Tetrahedron Letters 44 (2003) 2351–2354
12. The best results were obtained by adding acetic anhydride
directly to the reaction mixture containing 12, removal of
the solvents and treatment of the crude residue with
acetic anhydride/pyridine. The very sensitive phostones
could be purified, although with much decomposition.
Rapid filtration on a small column of SiO2 or even
neutral Al2O3 resulted in a total decomposition of the
phostones but two successive chromatographies on 0.2
mm thick silicagel plates, afforded 13 and 14 in 15 and
5% yield, respectively. After the first chromatography,
only a mixture of 13 and 14, in a respective 3/2 ratio,
could be obtained in 42% yield.
carbon), 169.06 (OC(O)CH3). 31P NMR (161.9 MHz,
CDCl3, 300 K) l 16.99 (d, J=6 Hz, P-8), 53.95 (d, J=6
Hz, P-2). HRMS calcd for C25H39O9P2 (M+H+) 541.1756,
found 541.1725. 15: 1H NMR (400 MHz, CD3OD, 300
K) l 1.20 (9H, t, J=7 Hz, HN+(CH2CH3)3), 2.02 (3H, s,
-C(O)-CH3), 2.57 (1H, ddd, J=16, 19.9, 22.6 Hz, H-7),
2.92 (1H, broad q, J=16 Hz), 3.09 (6H, q, J=7 Hz,
HN+(CH2CH3)3), 3.55 (1H, broad d, J=11.5 Hz, H-6),
3.68 (1H, broad d, J=11.5 Hz, H-6), 4.38 (1H, ABq,
J=11.8 Hz, -OCH2Ph), 4.40 (2H, m, H-4 and H-5), 4.47
(1H, ABq, J=11.8 Hz, -OCH2Ph), 4.53 (1H, ABq, J=
11.8 Hz, -OCH2Ph), 4.62 (1H, ABq, J=11.8 Hz,
-OCH2Ph), 5.27 (1H, broad d, J=8 Hz, H-3). 31P NMR
(161.9 MHz, CD3OD, 300 K) l 11.96 (d, J=9.8 Hz, P-8),
1
13. Selected analytical data: 13: H NMR (400 MHz, CDCl3,
300 K) l 1.26 (3H, t, J=7.2 Hz, -OCH2CH3), 1.29 (3H,
t, J=7.2 Hz, -OCH2CH3), 2.15 (3H, s, -C(O)-CH3), 2.72
(1H, ddd, J=16, 20.8, 22.8 Hz, H-7), 3.14 (1H, dt, J=16,
18.4 Hz, H-7), 3.62 (1H, dd, J=5.2, 11.6 Hz, H-6), 3.72
(1H, dd, J=2.4, 11.6 Hz, H-6), 4.14 (4H, m, -OCH2CH3),
4.46 (1H, t, J=8 Hz, H-4), 4.51 (1H, m, H-5), 4.52 (1H,
ABq, J=11.6 Hz, -OCH2Ph), 4.58 (1H, ABq, J=11.6
Hz, -OCH2Ph), 4.60 (1H, ABq, J=12 Hz, -OCH2Ph),
4.72 (1H, ABq, J=12 Hz, -OCH2Ph), 5.35 (1H, d, J=8
Hz, H-3), 7.2–7.4 (10H, m, Ph). 13C NMR (100.6 MHz,
CDCl3, 300 K) l 16.26 (OCH2CH3), 16.32 (OCH2CH3),
20.24 (OC(O)CH3), 28.10 (dd, J=87, 135 Hz, C-7), 62.54
(d, J=6.5 Hz, OCH2CH3), 62.76 (d, J=6.5 Hz,
OCH2CH3), 68.92 (d, J=4Hz, C-6), 72.97 (CH2Ph),
73.45 (CH2Ph), 75.92 (d, J=94.6 Hz, C-3), 77.02 (d,
J=17Hz, C-4), 79.92 (d, J=3.5 Hz, C-5), 127.7–128.4
(aromatic carbons), 137.23 (aromatic quaternary carbon),
137.79 (aromatic quaternary carbon), 171.22 (d, J=2.5
Hz, OC(O)CH3). 31P NMR (161.9 MHz, CDCl3, 300 K)
l 17.48 (d, J=9.6 Hz, P-8), 45.59 (d, J=9.6Hz, P-2).
HRMS calcd for C25H39O9P2 (M+H+) 541.1756, found
1
49.82 (d, J=9.8 Hz, P-2) 16: H NMR (400 MHz, D2O,
300 K) l 2.06 (1H, broad q, J=16 Hz, H-7), 2.15 (1H,
broad q, J=16 Hz, H-7), 3.65 (1H, dd, J=6.5, 11.8 Hz,
H-6), 3.79 (1H, broad dt, J=2.8, 6.5 Hz, H-5), 3.83 (1H,
broad dd, J=2.8, 11.8 Hz, H-6), 3.88–4.00 (2H, m, H-3,
H-4). 13C NMR (100.6 MHz, D2O, 300 K) l 63.44 (C-6),
70.25 (d, J=107.3 Hz, C-3), 70.79 (C-4 or C-5), 71.28 (d,
J=8.4 Hz, C-4 or C-5). 31P NMR (161.9 MHz, D2O, 300
K) l 14.60 (P-8), 38.40 (P-2).
14. The results from the NOESY experiments are shown
below:
15. The free phosphonylphostone 16 appears to be more
stable than its partially protected precursor 15. The struc-
ture of 16 is tentatively attributed. Five-membered ring
phostones are base-sensitive (see Ref. 11) and, although
we used the mildest possible conditions for acetate
removal, we cannot absolutely exclude that a furano-/
pyrano- isomerization took place. However, the relatively
high chemical shift of the ring phosphorus P-2 (38.40
ppm relative to H3PO4) compared to the expected value
for an acyclic phosphinic acid (ca. 28 ppm for 12) as well
as for a six-membered ring phostone derivative (below 25
ppm, see: Refs. 1a–e) favors the proposed structure. As
further evidences, the preference for the formation of
five- over six-membered ring arabino phostones from
acyclic precursors has been already stated (Ref. 1g) and
in the case of a pyranose derivative, at least one of the
H-6 is expected to be strongly coupled to P-2 (Ref. 1b).
1
541.1766. 14: H NMR (400 MHz, CDCl3, 300 K) l 1.35
(6H, t, J=7.1 Hz, -OCH2CH3), 2.17 (3H, s, -C(O)CH3),
2.67 (2H, m, H-7), 3.58 (1H, dd, J=4.9, 11.3 Hz, H-6),
3.71 (1H, dd, J=4, 8.2 Hz, H-4), 4.30 (1H, dt, J=4, 8
Hz, H-4), 4.38 (1H, m, H-5), 4.39 (1H, ABq, J=11.2 Hz,
-OCH2Ph), 4.51 ( 1H, ABq, J=12.2 Hz, -OCH2Ph), 4.59
(1H, ABq, J=12.2 Hz, -OCH2Ph), 4.63 (1H, ABq, J=
11.2 Hz, -OCH2Ph), 5.65 (1H, dd, J=1.9, 4 Hz, H-3),
7.2–7.4 (10H, m, Ph). 13C NMR (100.6 MHz, CDCl3, 300
K)
l 16.28 (OCH2CH3), 16.34 (OCH2CH3), 20.67
(OC(O)CH3), 26.01 (dd, J=86.9, 136 Hz, C-7), 63.03 (d,
J=4.8 Hz, OCH2CH3), 63.09 (d, J=6 Hz, OCH2CH3),
66.77 (d, J=103.5 Hz, C-3), 68.98 (d, J=3Hz, C-6), 72.97
(CH2Ph), 73.61 (CH2Ph), 75.51 (d, J=17.3 Hz, C-4),
82.17 (C-5), 127.8–128.6 (aromatic carbons), 136.54 (aro-
matic quaternary carbon), 137.60 (aromatic quaternary