10.1002/ejoc.201900965
European Journal of Organic Chemistry
COMMUNICATION
applied in the previously described homocoupling reactions just
without the additive (Scheme 5).
alcohols with electron-rich arenes led to a variety of substituted
1,1-diarylylethanes.
Dehydrative hydroarylation starting from 1-phenylethanol (1a)
with TMB yielded the respective product 9a in very good yield
(93%), whereas coupling with DMB gave product 8a in 71% yield
(entry 2), which could be explained by the higher nucleophilicity
of TMB provided by the three electron donating methoxy groups.
This is a general trend which is also visible when applying
benzylic alcohols substituted on the aryl ring. In contrast to the
homocoupling, the hydrooarylation of 1-(2-napthyl)ethanol (1l) to
8l and 9l was carried out in moderate to very good yields, even
though 1l was too reactive in the homodimerization. On the other
hand, methoxy-substituted substrates still underwent various side
reactions due to their higher electron density. Halogenated
substrates worked well, generating the products in good to
excellent yields (8e,f,g and 9e,f,g). Unfortunately, other C-C-
heterocoupling approaches with C-nucleophiles like indoles,
N-methylpyrroles, norbornene or vinylarenes, could not yield the
respective products selectively under these reaction conditions.
Acknowledgements
We are thankful to J. Grammel and R. Kimmich for technical
assistance. Financial support from Fonds der Chemischen
Industrie (Liebig fellowship IF), and the University of Tübingen
(Institutional Strategy of the University of Tübingen: Deutsche
Forschungsgemeinschaft ZUK 63) is gratefully acknowledged.
Keywords: benzylic alcohols • direct dehydrative coupling • acid
catalyzed • sp3-sp2 C-C bond formation• metal-free
[1]
a) New Trends in Cross-Coupling: Theory and Applications (Eds.: T. J.
Colacot), RSC, Cambridge, 2015. b) Metal-Catalyzed Cross-Coupling
Reactions and More (Eds.: A. de Meijere, S. Bräse, M. Oestreich), Wiley-
VCH, Weinheim, 2014.
[2]
[3]
Green Chemistry and Catalysis. (Eds.: R. Sheldon, I. Arends, U.
Hanefeld), Wiley-VCH, Weinheim, 2007.
OH
1
a) R. Kumar, E. V. Van der Eycken, Chem. Soc. Rev. 2013, 42, 1121-
1146; b) B. M. Trost, Science 1991, 254, 1471-1477; c) B. M. Trost, Acc.
Chem. Res. 2002, 35, 695-705; d) M. Dryzhakov, E. Richmond, J. Moran,
Synthesis 2016, 48, 935-959.
OMe
Ar
+
p-TsOH•H2O (16 mol%)
Ar
MeO
OMe
DCE, 100 °C, 4 h
R
OMe
[4]
[5]
a) M.B. Smith in March’s Advanced Organic Chemistry (Eds.: Smith, M.
B), 7th ed.; Wiley: Hoboken, NJ, 2013, pp. 500–503; b) J. An, R. M.
Denton, T. H. Lambert, E. D. Nacsa, Org. Biomol. Chem. 2014, 12, 2993;
c) R.C. Larock in Comprehensive Organic Transformations, Wiley-VCH:
New York, 1999, pp. 689–702; d) P. Margaretha in Science of Synthesis,
Vol. 35 (E. Schaumann), Thieme: Stuttgart, 2007, pp. 1–188.
a) G. W. Kabalka, M. Varma, R. S. Varma, J. Org. Chem. 1986, 51,
2386–2388; b) Y. Ju, D. Kumar, R. S. Varma, J. Org. Chem. 2006, 71,
6697–6700; c) H. Jia, Q. Li, A. Bayaguud, S. She, Y. Huang, K. Chen, Y.
Wei, Sci. Rep. 2017, 7, 1– 9, Article number: 12523; d) S. F. Zhu, Y.
Cai, H. X. Mao, J. H. Xie, Q. L. Zhou, Nat. Chem., 2010, 2, 546–551; e)
J. Kertesz, P. Huszthy, A. Kormos, F. Bertha, V. Horváth, G. Horvai,
Tetrahedron: Asymmetry 2009, 20, 2795–2801.
R = H
R = OMe 9
8
R
R1
OMe
OMe
R1
R = H
R
OMe
R
OMe
R1 = Cl 71% 8g
1 = Cl 93% 9g
R1 = Me 91% 9i
R1 = H 71% 8a
R1 = Ph 80% 8b
R1 = I 74% 8e
R1 = Cl 80% 8f
R = H
R = OMe
R
OMe
R = OMe
R
1 = H 93% 9a
[6]
a) M. Nesi, M. G. Brasca, A. Longo, W. Moretti, A. Panzeri, Tetrahedron
Lett. 1997, 38, 4881–4884; b) C. Studte, B. Breit, Angew. Chem. Int. Ed.
2008, 47, 5451–5455; c) N. S. Keddie, A. M. Slawin, T. Lebl, D. Philp, D.
O’Hagan, Nat. Chem., 2015, 7, 483–488; d) C. J. Marth, G. M. Gallego,
J. C. Lee, T. P. Lebold, S. Kulyk, K. G. Kou, J. Qin, R. Lilien, R. Sarpong,
Nature, 2015, 528, 493–498.
R1 = Ph >99% 9b
R1 = I 81% 9e
R1 = Cl >99% 9f
R
OMe
R = H
59% 8l
R = OMe 94% 9l
[7]
[8]
[9]
a) D. Chernyak, S. B. Gadamsetty, V. Gevorgyan, Org. Lett. 2008, 10,
2307–2310; b) C. Xu, L. Wang, X. Hao, D. Z. Wang, J. Org. Chem. 2012,
77, 6307–6313.
Scheme 5. Dehydrative hydroarylation. General reaction conditions: alcohol
(0.5 mmol), arene (1 mmol) p-TsOH•H2O (16 mol%, 15 mg), DCE (3.0 mL),
100°C, 4 h, isolated yields.
a) O. Mendoza, G. Rossey, L. Ghosez, Tetrahedron Lett. 2010, 51,
2571–2575; b) O. Mendoza, G. Rossey, L. Ghosez, Tetetrahedron Lett.
2011, 52, 2235–2239.
Conclusion
a) B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999, 576, 125–
146; b) Y. Miyake, S. Ota, M. Shibata, K. Nakajima, Y. Nishibayashi,
Chem. Commun. 2013, 49, 7809–7811.
In conclusion, we developed a simple, direct pathway to
substituted olefins from benzylic alcohols via an acid catalyzed
dehydrative homocoupling. An interesting promotive effect of
phosphine as Lewis basic co-catalyst was observed and
investigated. A plausible explanation is its interaction with
carbocationic intermediates to inhibit oligomerization. The use of
easy to handle and commercially available, inexpensive reagents,
relatively low catalyst loadings and the avoidance of toxic waste
provided an attractive route for the formation of new sp3-sp2 C-C
bonds. Furthermore, the dehydrative hydroarylation of benzylic
[10] For reviews see: a) M. M. Meravi, N. Ghalavand, M. Ghanbarian, L.
Mohammadkhani, Appl. Organometal. Chem. 2018, 32, e4466, DOI:
10.1002/aoc.4464; b) S. Fletcher, Org. Chem. Front. 2015, 2, 739–752;
c) K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. P. Kumar,
Chem. Rev. 2009, 109, 2551–2651. d) T. Y. S. But, P. H. Toy, Chem.
Asian J. 2007, 2, 1340; e) O. Mitsunobu, Synthesis 1981, 1–28; f) D. L.
Hughes, Org. Prep. Proced., 1996, 28, 127–164.
[11] For reviews see: a) R. Appel, Angew. Chem. Int. Ed., 1975, 14, 801; b)
R. Appel, M. Halstenberg in Organiophosphorous Reagents in Organic
Synthesis (Eds.: J. I. G. Cardogan), Academic Press, London, 1979, pp.
This article is protected by copyright. All rights reserved.