pubs.acs.org/joc
cross-coupling reactions as a final step are not appli-
Synthesis of Strained Pyridine-Containing Cyclyne
via Reductive Aromatization
cable to the synthesis of constrained skeletons involving p-
phenyleneacetylene segments (Scheme 1, route 1). Therefore,
several synthetic approaches including bromination-
debromination,2 photochemical valence isomerization,3 laser-
induced or photochemical cycloreversion,4 reduction using
lithium naphthalenide,5 dehydration-oxidation,6 and re-
ductive elimination of diarylmetal species7 have been developed
to construct strained macrocycles composed of bent benzene
rings or bent acetylene moieties. However, almost all of these
transformations require harsh conditions. Meanwhile, Lewis
acid mediated reductive aromatization is a well-known method
for constructing benzene rings from cyclohexa-1,4-dienes under
mild conditions with high efficiency.8,9 Swager and co-worker
have achieved the elegant synthesis of poly(anthrylenebuta-
diynylene)s using same tin-mediated reductive aromatization
approach.10 Based on the results of previous studies, we focused
our attention on tin-mediated reductive aromatization to con-
struct strained π-conjugated macrocycles (Scheme 1, route 2).
Koji Miki, Michiyasu Fujita, Yuki Inoue, Yoshinori Senda,
Toshiyuki Kowada, and Kouichi Ohe*
Department of Energy and Hydrocarbon Chemistry,
Graduate School of Engineering, Kyoto University,
Nishikyo-ku, Kyoto, 615-8510, Japan
Received April 1, 2010
SCHEME 1. Synthetic Approaches To Construct Strained
Diethynylbenzene-Containing Macrocycles
The Sonogashira-Hagihara coupling reactions of 2,6-
diiodopyridine and cis-3,6-diethynyl-3,6-dimethoxycy-
clohexa-1,4-diene or cis-9,10-diethynyl-9,10-dimethoxy-
9,10-dihydroanthracene gave macrocyclic compounds
having alternating 2,6-diethynylpyridine and 3,6-di-
methoxycyclohexa-1,4-diene segments. Transformation
of the C3-symmetric 2,6-diethynylpyridine-based cyclo-
trimer was efficiently achieved using tin-mediated reduc-
tive aromatization under mild conditions.
Pyridine-containing π-conjugated systems have attracted
much attention because of their electron-deficient properties
and their coordinative character.11 The 2,6-diethynylpyridine
(5) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. J. Am. Chem.
Soc. 2008, 130, 17646–7647.
(6) Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K.
Angew. Chem., Int. Ed. 2009, 48, 6112–6116.
(7) Yamago, S.; Watanabe, Y.; Iwamoto, T. Angew. Chem., Int. Ed. 2010,
49, 757–759.
(8) (a) Allen, C. F. H.; Bell, A. J. Am. Chem. Soc. 1942, 64, 1253–1261.
(b) Ried, W.; Schmit, H.-J.; Urschel, A. Chem. Ber. 1958, 91, 1280. (c) Ried,
W.; Donner, W.; Schlegelmilch, W. Chem. Ber. 1961, 94, 1051–1058.
(d) Clauss, G.; Ried, W. Chem. Ber. 1975, 108, 528–537. (e) Walborsky, H.
Strained macrocyclic π-conjugated molecules containing
p-phenylene and p-phenyleneacetylene segments have re-
ceived considerable attention due to their attractive struc-
tural features in material chemistry as well as host-guest
chemistry.1 Because of their strained structures, the simple
(1) (a) Steinberg, B. D.; Scott, L. T. Angew. Chem., Int. Ed. 2009, 48,
5400–5402. (b) Kawase, T.; Kurata, H. Chem. Rev. 2006, 106, 5250–5273.
(c) Tahara, K.; Tobe, Y. Chem. Rev. 2006, 106, 5274–5290. (d) Orita, A.;
Otera, J. Chem. Rev. 2006, 106, 5387. (e) Hisaki, I.; Sonoda, M.; Tobe, Y.
Eur. J. Org. Chem. 2006, 833–847.
(2) (a) Kawase, T.; Darabi, H. R.; Oda, M. Angew. Chem., Int. Ed. Engl.
1996, 35, 2664–2666. (b) Kawase, T. Synlett 2007, 2609–2626. and references
cited therein.
(3) (a) Ohkita, M.; Ando, K.; Yamamoto, K.-i.; Suzuki, T.; Tsuji, T.
Chem. Commun. 2000, 83–84. (b) Ohkita, M.; Ando, K.; Suzuki, T.; Tsuji, T.
J. Org. Chem. 2000, 65, 4385–4390. (c) Ohkita, M.; Ando, K.; Tsuji, T. Chem.
Commun. 2001, 2570–2571.
(4) (a) Diederich, F.; Rubin, Y.; Knobler, C. B.; Whetten, R. L.; Schriver,
K. E.; Houk, K. N.; Li, Y. Science 1986, 245, 1088–1090. (b) Tobe, Y.; Fujii,
T.; Matsumoto, H.; Naemura, K.; Achiba, Y.; Wakabayashi, T. J. Am.
Chem. Soc. 1996, 118, 2758–2759. (c) Tobe, Y.; Furukawa, R.; Sonoda, M.;
Wakabayashi, T. Angew. Chem., Int. Ed. 2001, 40, 4072–4074. (d) Hisaki, I.;
Eda, T.; Sonoda, M.; Niino, H.; Sato, T.; Wakabayashi, T.; Tobe, Y. J. Org.
Chem. 2005, 70, 1853–1864. (e) Umeda, R.; Sonoda, M.; Wakabayashi, T.;
Tobe, Y. Chem. Lett. 2005, 34, 1574–1579.
€
M.; Wust, H. H. J. Am. Chem. Soc. 1982, 104, 5807–5808.
(9) The synthetic approach of strained p-phenylenediacetylene macro-
cycles via reductive aromatization have been proposed by Sankararaman
and Hopf et al. See: (a) Srinivasan, M.; Sankararaman, S.; Hopf, H.;
Varghese, B. Eur. J. Org. Chem. 2003, 660–665. (b) Bandyopadhyay, A.;
Varghese, B.; Sankararaman, S. J. Org. Chem. 2006, 71, 4544–4548.
(10) Taylor, M. S.; Swager, T. M. Angew. Chem., Int. Ed. 2007, 46,
8480–8483.
(11) For selected recent examples, see: (a) Spitler, E. L.; McClintock,
S. P.; Haley, M. M. J. Org. Chem. 2007, 72, 6692–6699. (b) Johnson, C. A.,
II; Baker, B. A.; Berryman, O. B.; Zakharov, L. N.; O’Connor, M. J.; Haley,
M. M. J. Organomet. Chem. 2006, 691, 413–421. (c) Baxter, P. N. W.; Dali-
Youcef, R. J. Org. Chem. 2005, 70, 4935–4953. and references cited therein.
(d) Kobayashi, S.; Yamaguchi, Y.; Wakamiya, T.; Matsubara, Y.; Sugimoto,
K.; Yoshida, Z.-i. Tetrahedron Lett. 2003, 44, 1469–1472. (e) Baxter, P. N. W.
Chem.;Eur. J. 2002, 8, 5250–5264. (f) Tobe, Y.; Nakanishi, H.; Sonoda, M.;
Wakabayashi, T.; Achiba, Y. Chem. Commun. 1999, 1625–1626. (g) Tobe,
Y.; Nagano, A.; Kawabata, K.; Sonoda, M.; Naemura, K. Org. Lett. 2000, 2,
3265–3268.
DOI: 10.1021/jo1006202
r
Published on Web 04/26/2010
J. Org. Chem. 2010, 75, 3537–3540 3537
2010 American Chemical Society