Communication
Green Chemistry
(i) S. Xie, O. Ramström and M. Yan, Org. Lett., 2015, 17,
636.
4 For selected examples for the synthesis of amides, see:
(a) T. Fang, X. Gao, R. Tang, X. Zhang and C. Deng, Chem.
Commun., 2014, 50, 14775; (b) J. W. Bode and S. S. Sohn,
J. Am. Chem. Soc., 2007, 129, 13798; (c) P.-C. Chiang, Y. Kim
and J. W. Bode, Chem. Commun., 2009, 45, 4566;
(d) G. Carbone, J. Burnley and J. E. Moses, Chem. Commun.,
2013, 49, 2759; (e) Y. Yasui and Y. Takemoto, Chem. Rec.,
2008, 8, 386; (f) J. R. Martinelli, D. A. Watson,
D. M. M. Freckmann, T. E. Barder and S. L. Buchwald,
J. Org. Chem., 2008, 73, 7102; (g) E. Bon, D. C. H. Bigg and
G. Bertrand, J. Org. Chem., 1994, 59, 4035; (h) A. Klapars,
S. Parris, K. W. Anderson and S. L. Buchwald, J. Am. Chem.
Soc., 2004, 126, 3529; (i) C. Zhang, J. Liu and C. Xia, Catal.
Sci. Technol., 2015, 5, 4750; ( j) Y. Xie, J. Song, X. Yang,
J. Xiang and J. Li, Eur. J. Inorg. Chem., 2013, 2013, 5737;
(k) W. Li, C. Liu, H. Zhang, K. Ye, G. Zhang, W. Zhang,
Z. Duan, S. You and A. Lei, Angew. Chem., Int. Ed., 2014, 54,
2443; (l) T. T. S. Lew, D. Shu, W. Lim and Y. Zhang, Green
Chem., 2015, 17, 5140; (m) J. Liu, Q. Liu, H. Yi, C. Qin,
R. Bai, X. Qi, Y. Lan and A. Lei, Angew. Chem., Int. Ed.,
2014, 54, 502; (n) O. P. S. Patel, D. Anand, R. K. Maurya and
P. P. Yadav, Green Chem., 2015, 17, 3728; (o) M. Xu,
X. Zhang, Y. Shao, J. Han and P. Zhou, Adv. Synth. Catal.,
2012, 354, 2665; (p) N. A. Owston, A. J. Parker and
J. M. Williams, Org. Lett., 2007, 9, 3599; (q) R. Vanjari,
T. Guntreddi and K. N. Singh, Green Chem., 2014, 16, 351.
5 W. Li, Z. Du, J. Huang, Q. Jia, K. Zhang and J. Wang, Green
Chem., 2014, 16, 3006.
Scheme 4 Plausible mechanism.
carbaldehyde 2a generates enolate A, with subsequent cyclo-
addition to phenyl azide 1a to afford the intermediate 4, which
would then rearrange to amide 3aa with extrusion of N2 gas at
110 °C.
In summary, we have developed the IL-catalyzed amidation
of azides with aldehydes for the synthesis of amides, which
are valuable synthons for the chemical and pharmaceutical
industry. This protocol does not require an organic solvent or
any other catalyst and thus it provides a better and practical
alternative to the existing procedures. We believe that this
azide–aldehyde cycloaddition/rearrangement reaction mediated
by ILs will help chemists to design more and more interesting,
useful, and sustainable reactions in the near future.
We are grateful for the financial support from the Program
for Innovative Research Team (in Science and Technology) in
the University of Yunnan Province (IRTSTYN 2014–11) and The
Applied Basic Research Key Project of Yunnan (2013FA039).
6 W. Li, Z. Du, K. Zhang and J. Wang, Green Chem., 2015, 17,
781.
7 (a) Z. Zhang, Z. Li, B. Fu and Z. Zhang, Chem. Commun.,
2015, 51, 16312; (b) L. Gu and C. Jin, Chem. Commun.,
2015, 51, 6572.
8 C. Tang and N. Jiao, J. Am. Chem. Soc., 2012, 134, 18924.
9 J. Xu, X. Li, Y. Gao, L. Zhang, W. Chen, H. Fang, G. Tang
and Y. Zhao, Chem. Commun., 2015, 51, 11240.
Notes and references
1 (a) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams,
Org. Biomol. Chem., 2006, 4, 2337; (b) V. R. Pattabiraman
and J. W. Bode, Nature, 2011, 480, 471; (c) J. M. Humphrey
and A. R. Chamberlin, Chem. Rev., 1997, 97, 2243;
(d) S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011,
54, 3451; (e) C. Lamberth, H. J. Kempf and M. Kriz, Pest 10 V. V. Rostovtsev, L. G. Green, V. V. Fokin and
Manage. Sci., 2007, 63, 57; (f) H. M. D. Navickiene, K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.
J. E. Miranda, S. A. Bortoli, M. J. Kato, V. S. Bolzani and 11 M. Whiting, J. Muldoon, Y. C. Lin, S. M. Silverman,
M. Furlan, Pest Manage. Sci., 2007, 63, 399.
2 M. B. Smith, Compendium of Organic Synthetic Methods,
Wiley, New York, 2009, vol. 12, pp. 100–116.
W. Lindstrom, A. J. Olson, H. C. Kolb, M. G. Finn,
K. B. Sharpless, J. H. Elder and V. V. Foki, Angew. Chem.,
Int. Ed., 2006, 45, 1435.
3 For selected examples, see: (a) B. Kang, Q. Fu and S. Hong, 12 M. Belkheira, D. E. Abed, J.-M. Pons and C. Bressy, Chem. –
J. Am. Chem. Soc., 2013, 135, 11704; (b) K. E. Schwieter, Eur. J., 2011, 17, 12917.
B. Shen, J. P. Shackleford, M. W. Leighty and J. F. Johnston, 13 M. K. Meilahn, B. Cox and M. E. Munk, J. Org. Chem., 1975,
Org. Lett., 2014, 16, 4714; (c) K. Kim, B. Kang and S. Hong, 40, 819.
Tetrahedron, 2015, 71, 4565; (d) B. Kang and S. Hong, Adv. 14 B. Zhou, Y. Yang, J. Shi, H. Feng and Y. Li, Chem. – Eur. J.,
Synth. Catal., 2015, 357, 834; (e) C. Chen, M. Ha and 2013, 19, 10511.
S. Hong, Org. Chem. Front., 2015, 2, 241; (f) N. Wang, 15 X. Guo, L. Tang, Y. Yang, Z. Zha and Z. Wang, Green Chem.,
X. Zou, J. Ma and F. Li, Chem. Commun., 2014, 50, 8303; 2014, 16, 2443.
(g) S. Kumari, A. Shekhar, H. P. Mungse, M. O. P. Khatri 16 Z. Fu, J. Lee, B. Kang and S. Hong, Org. Lett., 2012, 14,
and D. D. Pathak, RSC Adv., 2014, 4, 41690; (h) T. Wang, 6028.
L. Yuan, Z. Zhao, A. Shao, M. Gao, Y. Huang, F. Xiong, 17 S. Xie, R. Fukumoto, O. Ramström and M. Yan, J. Org.
H. Zhang and J. Zhao, Green Chem., 2015, 17, 2741; Chem., 2015, 80, 4392.
Green Chem.
This journal is © The Royal Society of Chemistry 2016