the allenylmetallic for catalytic asymmetric allenylations.4m,n,s
For organoboranes, Zweifel observed that R-substituted
allenyldialkylboranes undergo a 1,3-boratropic rearrangement
to the propargyl system if the allenylboranes were allowed
to thermally equilibrate at 25 °C.5 However, this rearrange-
ment is not observed for unsubstituted B-allenyl systems,
and isomerically pure B-allenyl-9-BBN is readily prepared,
free of propargylic impurities, from C3H3MgBr and B-Cl-
9-BBN.6 This reagent adds rapidly at -78 °C to both
aldehydes and ketones to give racemic homopropargylic
alcohols exclusively.
Scheme 1
We felt that if more direct access to effective reagents for
asymmetric allenylboration were available, new applications
for the versatile homopargylic alcohols would follow.2,7 The
ideal reagent should be readily available in either enantio-
meric form directly from a simple Grignard procedure. It
should also be easy to isolate in pure form and be a stable
reagent that can be stored indefinitely. The reagent should
also be highly enantioselective, adding rapidly to aldehydes
in a highly predictable manner. Moreover, the allenylboration
procedures with the reagent should also be designed to
recycle the chiral borane moiety by producing the precursor
to this reagent. If this intermediate was also an air-stable
crystalline compound, the difficulties associated with the
handling of air-sensitive organoboranes could be eliminated.
In a general sense, we felt that the reagent should provide
the equivalent of the asymmetric addition of allenylmagne-
sium bromide to aldehydes. Mindful of these goals, we wish
to report the synthesis of the enantiomeric B-allenyl-10-TMS-
9-borabicyclo[3.3.2]-decanes (1) and their use in the asym-
metric allenylboration process.
(4) See, for Mg: (a) Moreau, J.-L.; Gaudemar, M. Bull. Soc. Chim. Fr.
1970, 2171-2174. (b) Moreau, J.-L.; Gaudemar, M. Bull. Soc. Chim. Fr.
1970, 2175. For Li: (c) Corey, E. J.; Rucker, C. Tetrahedron Lett. 1982,
23, 719-722. (d) Wang, K. K.; Nikam, S. S.; Ho, C. D. J. Org. Chem.
1983, 48, 5376-5377. (e) Reich, H. J.; Holladay, J. E.; Walker, T. G.;
Thompson, J. L J. Am. Chem. Soc. 1999, 121, 9769-9780. For Ti: (f)
Furata, K.; Ishiguro, M.; Haruta, R.; Ikeda, N.; Yamamoto, H. Bull. Chem.
Soc. Jpn. 1984, 57, 2768. (g) Ishiguro, M.; Ikeda, N.; Yamamoto, H. J.
Org. Chem. 1982, 47, 2225-2227. (h) Keck, G. E.; Krishnamurthy, D.;
Chen, X. Tetrahedron Lett. 1994, 35, 8323-8324. (i) Konishi, S.; Hanawa,
H.; Maruoka, K. Tetrahedron: Asymmetry 2003, 14, 1603-1605. For Zn,
Al: (j) Daniels, R. G.; Paquette, L. A. Tetrahedron Lett. 1981, 22, 1579-
1582. For Zn: (k) Zweifel, G.; Hahn, G. J. Org. Chem. 1984, 49, 4565-
4569. (l) Pearson, N. R.; Hahn, G.; Zweifel, G. J. Org. Chem. 1982, 47,
3364-3366. For Sn: (m) Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1991,
56, 3211-3213. (n) Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1990, 55,
6246-6248. (o) Marshall, J. A.; Adams, M. D. J. Org. Chem. 1997, 62,
8976-8977. (p) Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123,
6199-6200. (q) Roy, S.; Banerjee, M. Org. Lett. 2004, 6, 2137-2140. (r)
Yu, C.-M.; Yoon, S. K.; Back, K.; Lee, J.-Y. Angew. Chem., Int. Ed. 1998.
37, 2392-2395. For Si: (s) Danheiser, R. L.; Carini, D. J. J. Org. Chem.
1980, 45, 3925-3927. (t) Danheiser, R. L.; Carini, D. J.; Kwasigroch, C.
A. J. Org. Chem. 1986, 51, 3870-3878. (u) Nakajima, M.; Saito, M.;
Hashimoto, S. Tetrahedron: Asymmetry 2002, 13, 2449. (v) Kobayashi,
S.; Nishio, K. J. Am. Chem. Soc. 1995, 117, 6392-6393. For B: (w) Farve,
E.; Gaudemar, M. J. Organomet. Chem. 1974, 76, 297-304. (x) Farve, E.;
Gaudemar, M. J. Organomet. Chem. 1974, 76, 305-313. (y) Brown, H.
C.; Khire, U. R.; Narla, G. J. Org. Chem. 1995, 60, 8130-8131. (z) Wang,
K. K.; Nikam, S. S.; Ho, C. D. J. Org. Chem. 1983, 48, 5376-5377. (aa)
Kulkarni, S. V.; Brown, H. C. Tetrahedron Lett. 1996, 37, 4125-4128.
For In: (ab) Loh, T.-P.; Lin, M.-J.; Tan, K.-L. Tetrahedron Lett. 2003, 44,
507-509.
Recently, we described the clean insertion of CHTMS into
a ring B-C bond in 2 by TMSCHN2 (10 h, C6H14, 70 °C)
to afford the very stable B-MeO-10-TMS-9-BBD (3) in 97%
yield after distillation (bp 80 °C, 0.10 mmHg) (Scheme 1).8
Not only is 3 thermally stable, but also it is unusually stable,
for a borinate ester, to the open atmosphere for brief periods
of time (17 h, 3% oxidation). Moreover, 3 is cleanly
converted to (()-1 with allenylmagnesium bromide in ether.
The isolation of (()-1 in pure form is quite simple, involving
only filtration, concentration, and distillation (90%, bp 88-
91 °C, 0.10 mmHg) (Scheme 1).9 To our knowledge, this is
the first time that a chiral allenylborane has been isolated in
pure form.2,3
Compound (()-3 is easily resolved through a modified
version of the Masamune amino alcohol protocol10 employing
0.5 equiv of (1S,2S)-pseudoephedrine (PE) in acetonitrile to
give (+)-4R (38%) as a pure crystalline compound, leaving
(+)-3S in solution. After concentration of the supernatant
to remove the liberated methanol, 0.5 equiv of (1R,2R)-PE
(8) (a) Soderquist, J. A.; Matos, K.; Burgos, C. H.; Lai, C.; Vaquer, J.;
Medina, J. R.; Huang, S. D. In ACS Symposium Series 783; Ramachandran,
P. V., Brown, H. C., Eds.; American Chemical Society: Washington, DC,
2000; Chapter 13, pp 176-194. (b) Burgos, C. H.; Matos, K.; Canales, E.;
Soderquist, J. A. J. Am. Chem. Soc., submitted for publication, Supporting
Information. (c) The upfield 11B NMR signal for 4 exhibits variability with
the concentration of 4.
(5) Zweifel, G.; Backlund, S. J.; Leung, T. J. Am. Chem. Soc. 1978,
100, 5561-5562.
(6) (a) Brown, H. C.; Khire, U. R.; Racherla, U. S. Tetrahedron Lett.
1993, 34, 15. (b) Brown, H. C.; Khire, U. R.; Narla, G.; Racherla, U. S. J.
Org. Chem. 1995, 60, 544-549.
(7) (a) Fryhle, C. B.; Williard, P. G.; Rybak, C. M. Tetrahedron Lett.
1992, 33, 2327-2330. (b) Rao, A. V. Rama; Reddy, S. P. Synth. Commun.
1986, 16, 1149. (c) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 1999,
121, 11680-11683. (d) See also, for example: Corey, E. J.; Cheng, X.-M.
The Logic of Chemical Synthesis; Wiley: New York, 1989.
(9) We initially investigated several alternative routes to (()-1 including
the B-X-10-TMS-9-BBD (X ) Cl, Br)/allenyltributyltin exchange process
for which the B-Br derivative is successful (CH2Cl2, 25 °C, 28 h).
(10) Short, R. P.; Masamune, S. J. Am. Chem. Soc. 1989, 111, 1892-
1894.
800
Org. Lett., Vol. 7, No. 5, 2005