on verdazyls have been their magnetic properties11 and
coordination chemistry.12 The redox properties of specific
verdazyl derivatives have been reported,13 but there have been
no systematic studies. Herein we present electrochemical
studies on a range of verdazyl radicals with a view to
correlating redox properties with molecular structure.
Table 1. List of Substituents for Verdazyls 1 and Precursors
3-5
derivative
R1
R2
R3
derivative R1
R2
R3
a
b
c
d
e
fa
g
H
H
H
h
Me Me
H
OMe OMe Me
Me
H
Cl
CN
Me
i
Me Me Cl
Me Me CN
Me Me NO2
Me Me CF3
CF3 CF3 Me
NO2 NO2 Me
Me
H
Cl
CN
Me
Me
Me
Me
Me
ja
ka
la
ma
nb
OMe
a Formazan 4 prepared, but verdazyl 1 synthesis was unsuccessful.
b Formazan synthesis unsuccessful.
Methylene-bridged triaryl verdazyls 1 were prepared using
established procedures.10a Formazans 4 (prepared by reactions
of hydrazones 3 with diazonium salts14) react with form-
aldehyde in the presence of base to produce tetrahydro-
tetrazines 5 which are oxidized in air to give the verdazyls
1 (Scheme 1). This is a broadly applicable procedure for
A smaller series of 6-oxoverdazyls 2 was also prepared.
1,3,5-Triphenyl-6-oxoverdazyl 2a was prepared according
to Milcent’s procedure15 with some modifications (see
Supporting Information). 1,5-Dimethyl-3-phenyl-6-oxo-
verdazyl 2b was the lone N,N′-dimethylverdazyl employed
in this study; the stability of N-N-dimethyl-substituted
verdazyls varies widely depending on R3 in unpredictable
ways. The remaining oxoverdazyls 2c-2f have isopropyl
groups on the nitrogens, which are much more robust.16
Derivatives 2c,17 2d, and 2e16 were prepared as reported,
while 2f is a new verdazyl radical derivative.
Scheme 1
The electrochemical properties of radicals 1a-e, g-i, and
2a-2f were studied using cyclic voltammetry; data are
summarized in Table 2. With few exceptions, verdazyls
display fully reversible oxidation and reduction processes.
Reversibility of the redox processes were confirmed as
(12) (a) Brook, D. J. R.; Lynch, V.; Conklin, B.; Fox, M. A. J. Am.
Chem. Soc. 1997, 119, 5155. (b) Brook, D. J. R.; Fornell, S.; Stevens, J.
E.; Noll, B.; Koch, T. H.; Eisfeld, W. Inorg. Chem. 2000, 39, 562. (c) Hicks,
R. G.; Lemaire, M. T.; Thompson, L. K.; Barclay, T. M. J. Am. Chem.
Soc. 2000, 122, 8077. (d) Wu, J. Z.; Bouwman, E.; Reedijk, J.; Mills, A.
M.; Spek, A. L. Inorg. Chim. Acta 2003, 351, 326. (e) Gilroy, J. B.; Koivisto,
B. D.; McDonald, R.; Ferguson, M. J.; Hicks, R. G. J. Mater. Chem. 2006,
16, 2618. (f) Pointillart, F.; Train, C.; Herson, P.; Marrot, J.; Verdaguer,
M. New J. Chem. 2007, 31, 1001.
(13) (a) Jaworski, J. S. J. Electroanal. Chem. 1991, 300, 167. (b)
Jaworski, J. S.; Krawczyk, I. Monatsh. Chem. 1992, 123, 43. (c) Nakatsuji,
S.; Kitamura, A.; Takai, A.; Nishikawa, K.; Morimoto, Y.; Yasuoka, N.;
Kawamura, H.; Anzai, H. Z. Naturforsch. B 1998, 53, 495. (d) Barr, C. L.;
Chase, P. A.; Hicks, R. G.; Lemaire, M. T.; Stevens, C. L. J. Org. Chem.
1999, 64, 8893. (e) Fico, R. M.; Hay, M. F.; Reese, S.; Hammond, S.;
Lambert, E.; Fox, M. A. J. Org. Chem. 1999, 64, 9386. (f) Keeney, L.;
Hynes, M. J. Dalton Trans. 2005, 133. (g) Chahma, M.; Wang, X. S.; van
der Est, A.; Pilkington, M. J Org. Chem. 2006, 71, 2750.
the synthesis of verdazyls, although with some limitations
when strong electron-withdrawing groups are present. In one
case (R1 ) R2 ) NO2, R3 ) Me) the formazan 4n could not
be made, while other formazans with electron-withdrawing
groups (4f, j, k, l, m) could be successfully prepared but
could not be converted to the corresponding verdazyl radicals
(Table 1).
(9) (a) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.;
Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351. (b) Nishide,
H.; Iwasa, S.; Pu, Y. J.; Suga, T.; Nakahara, K.; Satoh, M. Electrochim.
Acta 2004, 50, 827. (c) Suga, T.; Pu, Y. J.; Oyaizu, K.; Nishide, H. Bull.
Chem. Soc. Jpn. 2004, 77, 2203. (d) Buhrmester, C.; Moshurchak, L. M.;
Wang, R. L.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1800. (e)
Katsumata, T.; Satoh, M.; Wada, J.; Shiotsuki, M.; Sanda, F.; Masuda, T.
Macromol. Rapid Commun. 2006, 27, 1206. (f) Nakahara, K.; Iwasa, S.;
Iriyama, J.; Morioka, Y.; Suguro, M.; Satoh, M.; Cairns, E. J. Electrochim.
Acta 2006, 52, 921. (g) Li, H. Q.; Zou, Y.; Xia, Y. Y. Electrochim. Acta
2007, 52, 2153.
(14) Nineham, A. W. Chem. ReV. 1955, 55, 355.
(15) Milcent, R.; Barbier, G.; Capelle, S.; Catteau, J. P. J. Heterocycl.
Chem. 1994, 31, 319.
(16) Pare, E. C.; Brook, D. J. R.; Brieger, A.; Badik, M.; Schinke, M.
Org. Biomol. Chem. 2005, 3, 4258.
(10) (a) Neugebauer, F. A. Angew. Chem., Int. Ed. Engl. 1973, 12, 455.
(b) Neugebauer, F. A.; Fischer, H.; Siegel, R. Chem. Ber. 1988, 121, 815.
(11) Koivisto, B. D.; Hicks, R. G. Coord. Chem. ReV. 2005, 249, 2612.
(17) Gilroy, J. B.; McKinnon, S. D. J.; Kennepohl, P.; Zsombor, M. S.;
Ferguson, M. J.; Thompson, L. K.; Hicks, R. G. J. Org. Chem. 2007, 72,
8062.
4838
Org. Lett., Vol. 9, No. 23, 2007