Paper
Dalton Transactions
in Fig. 5. In the solution state, molecular motion is relatively
free and agostic interaction occurs to stabilize the 16-electron
Acknowledgements
complex, which lowers the energy gap between the 16-electron This work was partially supported by a JSPS KAKENHI Grant
complex and metal–dihydrogen complex (ΔH1° in Fig. 5). In the (B) 19H02729, Institute for Quantum Chemical Exploration
case of 2, on the other hand, the coordinatively unsaturated (IQCE), Adaptable and Seamless Technology Transfer Program
site, which is formed by N2 removal, should be fully exposed through Target-Driven R and D (A-STEP, JST) and Tohoku uni-
due to the restricted motion of the PCy3 ligand in the solid versity molecule & material synthesis platform in nanotechno-
state. Therefore, there is no stabilization of the 16-electron logy platform project sponsored by the Ministry of Education,
complex, which leads to a significantly large energy gap Culture, Sports, Science and Technology (MEXT), Japan.
between the 16-electron complex and metal–dihydrogen
complex (ΔH2° in Fig. 5).
Here we discuss the difference in the H2 adsorption iso-
Notes and references
therms of
2
and the previously reported [Mn(CO)
(dppe)2][BArF4].42 Although the ΔH° value is similar (−49 kJ
mol−1 for 2 and −52 kJ mol−1 for [Mn(CO)(dppe)2][BArF4]),
there is a large difference in the adsorbed amount of H2. The
utilization fraction for H2 adsorption in [Mn(CO)
(dppe)2][BArF4] (0.35) is much higher than that of 2 (0.04). This
value is too much to be the surface adsorption. Recently,
Weller and co-workers reported the reversible encapsulation of
CH2Cl2 and Xe into a non-porous organometallic framework
1 J. Camp, V. Stavila, M. D. Allendorf, D. Prendergast and
M. Haranczyk, J. Phys. Chem. C, 2018, 122, 18957.
2 S. Rostami, A. N. Pour, A. Salimi and A. Abolghasempour,
Int. J. Hydrogen Energy, 2018, 43, 7072.
3 R. K. Ahluwalia, T. Q. Hua and J. K. Peng, Int. J. Hydrogen
Energy, 2012, 37, 2891–2910.
4 K. M. Thomas, Dalton Trans., 2009, 1487–1505.
5 D. E. Jaramillo, H. Z. H. Jiang, H. A. Evans, R. Chakraborty,
H. Furukawa, C. M. Brown, M. Head-Gordon and
J. R. Long, J. Am. Chem. Soc., 2021, 143, 6248.
6 Y. Liu, H. Kabbour, C. M. Brown, D. A. Neumann and
C. C. Ahn, Langmuir, 2008, 24, 4772.
7 M. D. Allendorf, Z. Hulvey, T. Gennett, A. Ahmed, T. Autrey,
J. Camp, E. S. Cho, H. Furukawa, M. Haranczyk, M. Head-
Gordon, S. Jeong, A. Karkamkar, D. Liu, J. R. Long,
K. R. Meihaus, I. H. Nayyar, R. Nazarov, D. J. Siegel,
V. Stavila, J. J. Urban, S. P. Veccham and B. C. Wood, Energy
Environ. Sci., 2018, 11, 2784.
[Rh(Cy2PCH2PCy2)(NBD)][BArF
]
(NBD
=
norbornadiene).51
4
They showed that the non-covalent interaction of the CF3
−
group and the hydrophobic pathway made by the [BArF
]
4
anion play an important role in the dynamic porosity. In the
−
case of [Mn(CO)(dppe)2][BArF4], the [BArF
contribute to the dynamic porosity.
]
anion should also
4
Conclusions
8 M. Dinca and J. R. Long, Angew. Chem., Int. Ed., 2008, 47,
6766–6779.
In conclusion, we presented the H2 adsorption properties of
[Mo(PCy3)2(CO)3] in the solid state synthesized by the two pro-
cedures. The sample synthesized via the removal of the N2-
adduct showed a Langmuir type reversible ad/desorption of H2
above room temperature. Although the adsorption density of
H2 is quite low (0.01 wt%), the N2 elimination of N2-adducts is
widely applicable. Thus, the current method will be a facile
method for evaluating thermodynamic parameters in a series
of dihydrogen complexes.
9 D. Denysenko, M. Grzywa, J. Jelic, K. Reuter and
D. Volkmer, Angew. Chem., Int. Ed., 2014, 53, 5832.
10 N. Li, Z. Chang, H. Huang, R. Feng, W.-W. He, M. Zhong,
D. G. Madden, M. J. Zaworotko and X.-H. Bu, Small, 2019,
15, 1900426.
11 D.-S. Zhang, Z. Chang, Y.-F. Li, Z.-Y. Jiang, Z.-H. Xuan,
Y.-H. Zhang, J.-R. Li, Q. Chen, T.-L. Hu and X.-H. Bu, Sci.
Rep., 2013, 3, 3312.
12 S. B. Kalidindi and R. A. Fischer, Phys. Status Solidi B, 2013,
250, 1119.
13 A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi and
M. Aziz, Int. J. Hydrogen Energy, 2019, 44, 15026–15044.
14 M. V. Lototskyy, M. W. Davids, I. Tolj, Y. V. Klochko,
B. S. Sekhar, S. Chidziva, F. Smith, D. Swanepoel and
B. G. Pollet, Int. J. Hydrogen Energy, 2015, 40, 11491.
15 R. B. Biniwale, S. Rayalu, S. Devotta and M. Ichikawa,
Int. J. Hydrogen Energy, 2008, 33, 360.
Author contributions
K. Uchida: investigation, writing-original draft. N. Kishimoto:
computation. S. Noro: Gas adsorption. H. Iguchi: conceptualiz-
ation, writing-review and editing. S. Takaishi: conceptualiz-
ation, funding, supervision, writing-review and editing, project
administration.
16 T. R. Somo, T. C. Maponya, M. W. Davids, M. J. Hato,
M. V. Lototskyy and K. D. Modibane, Metals, 2020, 10, 562.
17 G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini and
H. J. Wasserman, J. Am. Chem. Soc., 1984, 106, 451.
18 G. J. Kubas, Chem. Rev., 2007, 107, 4152–4205.
19 G. J. Kubas, J. Organomet. Chem., 2009, 694, 2648–2653.
Conflicts of interest
There are no conflicts to declare.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2021