5576
K. Tachibana et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5573–5576
Trp741, which exists in the proximity of the region
where Helix 12 would be folded to express agonistic
activity, resulting in potent antagonistic activity (Fig. 2).
Further optimization would be necessary to acquire
sufficient metabolic stability for in vivo activity.
In summary, we have discovered new steroidal com-
pounds bearing a carboxy-containing side chain that ex-
hibit AR pure antagonistic activities at submicromolar
concentrations. The structure–activity relationships of
the compounds were also clarified. It appears that their
agonistic/antagonistic activities depend on the structure
of the side chain. These findings could be helpful for fur-
ther investigations in the future.
For compounds 21–23 (m = 3, position = para), antago-
nistic activities increased 3- to 12-fold compared to that
of compound 14. In the case of compound 24 (m = 3,
position = meta), the antagonistic activity was lower
than that of compound 14.
Although compounds 25–27 (m = 4, position = para)
exhibited antagonistic activities with IC50s of 250–
850 nM, they tend to show higher partial agonistic activ-
ities compared to other types of compounds. On the
contrary, compounds 28–30 (m = 4, position = meta)
exhibited no agonistic activities even at 10,000 nM,
retaining the antagonistic activities with IC50s of 330–
920 nM. These results may suggest that the substitution
position of the terminal carboxyalkyloxy group corre-
lates with the antagonistic activity of compounds 21–
24 (m = 3) and with agonistic activity of compounds
25–30 (m = 4).
Acknowledgment
The authors thank Ms. Frances Ford of Chugai
Pharmaceutical Co., Ltd for assistance with English usage.
References and notes
1. Landis, S. H.; Murray, T.; Bolden, S.; Wingo, P. A. CA.
Cancer J. Clin. 1999, 49, 8.
2. Stewart, A. B.; Lwaleed, B. A.; Douglas, D. A.; Birch, B.
R. Curr. Med. Chem. Anticancer Agents 2005, 5, 603.
3. Kennealey, G. T.; Furr, B. J. Urol. Clin. North Am. 1991,
18, 99.
4. Blackledge, G.; Kolvenbag, G.; Nash, A. Anticancer
Drugs 1996, 7, 27.
5. Tyrrell, C. J.; Altwein, J. E.; Klippel, F.; Varenhorst, E.;
Lunglmayr, G.; Boccardo, F.; Holdaway, I. M.; Haefliger,
J. M.; Jordaan, J. P. J. Urol. 1991, 146, 1321.
6. Eisenberger, M. A.; Blumenstein, B. A.; Crawfold, E. D.;
Miller, G.; McLeod, D. G.; Leohrer, P. J.; Wilding, G.;
Sears, K.; Culkin, D. J.; Thompson, I. M., Jr.; Bueschen,
A. J.; Lowe, B. A. N. Engl. J. Med. 1998, 339, 1036.
7. Wirth, M. P.; Froschermaier, S. E. Urol. Res. 1997, 25,
S67.
Furthermore, the number of methylene groups (n) has
been found to be strongly related to agonistic activities
rather than antagonistic activities in compounds 21–23
(m = 3, position = para) and 25–27 (m = 4, position =
para) since agonistic activity changed considerably by
changing n in an identical type (same m, same position).
Compound 22, one of the pure antagonists discovered in
this investigation, exhibited only slight improvement of
in vitro metabolic stability against CH4892280 and
showed almost no in vivo antiandrogenic activities on
seminal vesicle wet weight in castrated mice (Table 3).17
8. Kemppainen, J. A.; Wilson, E. M. Urology 1996, 48, 157.
9. Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y.
Bioorg. Med. Chem. Lett. 2003, 13, 2655.
10. Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2005, 13,
5080.
11. Tachibana, K.; Imaoka, I.; Yoshino, H.; Emura, T.;
Kodama, H.; Furuta, Y.; Kato, N.; Nakamura, M.; Ohta,
M.; Taniguchi, K.; Ishikura, N.; Nagamuta, M.; Onuma,
E.; Sato, H. Bioorg. Med. Chem. 2007, 15, 174.
12. Kanbe, Y.; Kim, M.-H.; Nishimoto, M.; Ohtake, Y.;
Tsunenari, T.; Taniguchi, K.; Ohizumi, I.; Kaiho, S.;
Nabuchi, Y.; Kawata, S.; Morikawa, K.; Jo, J.-C.; Kwon,
H.-A.; Lim, H.-S.; Kim, H.-Y. Bioorg. Med. Chem. Lett.
2006, 16, 4090.
13. Kanbe, Y.; Kim, M.-H.; Nishimoto, M.; Ohtake, Y.;
Yoneya, T.; Ohizumi, I.; Tsunenari, T.; Taniguchi, K.;
Kaiho, S.; Nabuchi, Y.; Araya, H.; Kawata, S.; Morik-
awa, K.; Jo, J.-C.; Kwon, H.-A.; Lim, H.-S.; Kim, H.-Y.
Bioorg. Med. Chem. Lett. 2006, 16, 4959.
Figure 2. Binding model of compound 29 (white) to AR. This model
was built in the same manner as for compounds 6 and 14 (Fig. 1). Helix
12 of AR was removed in the model.
14. Kaiho, S.; Ohizumi, I.; Tamura, K.; Kato, N.; Yoneya, T.;
Tachibana, K. PCT Int. Appl. WO 200114406, 2001.
15. Nakamura, M.; Tachibana, K.; Imaoka, I.; Yoshino, H.;
Kawata, S. PCT Int. Appl. WO 2003051903, 2003.
16. Matias, P. M.; Donner, P.; Coelho, R.; Thomaz, M.;
Peixoto, C.; Macedo, S.; Otto, N.; Joschko, S.; Scholz, P.;
Wegg, A.; Basler, S.; Schafer, M.; Egner, U.; Carrondo,
M. A. J. Biol. Chem. 2000, 275, 26164.
Table 3. Antiandrogenic activities of compound 22
Dose (mg/body)
Inhibitiona (%)
1
3
6.7
0.8
6.4
10
a Inhibition of TP (testosterone propionate)-stimulated seminal vesicle
weight gain by subcutaneous administration of compound 22 (n = 4).
17. Hershberger, L. G.; Shipley, E. G.; Meyer, R. K. Proc.
Soc. Exp. Biol. Med. 1953, 83, 175.