J. M. Ontoria et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4026–4030
4029
HO2C
N
NHAc
MeO2C
N
NH2
Br
Acknowledgments
a, b
c, d, e
The authors thank Monica Bisbocci and Nadia Gennari
for biological testing; and Fabio Bonelli, Anna Alfieri,
and Vincenzo Pucci for analytical work.
16
17
O
O
MeO2C
N
N
f, g, h, i
Br
11b
References and notes
1. Cohen, J. Science 1999, 285, 26.
18
2. EASL International Consensus Conference on Hepatitis
C, Consensus Statement. J. Hepatol. 1999, 30, 956.
3. Steedman, S. A.; Younossi, Z. M. J. Clin. Gastroenterol.
2000, 30, 125.
4. Dymock, B. W. Emerging Drugs 2001, 6, 13.
5. Kolykhalov, A. A.; Mihalik, K.; Feinstone, S. M.; Rice, C.
M. J. Virol. 2000, 74, 2046.
Scheme 2. Reagents and conditions: (a) AcCl, MeOH, reflux (64%);
(b) Br2, CHCl3, rt (28%); (c) C6H11CꢀCTMS, Pd(dppf)Cl2, LiCl,
t
Na2CO3, DMF, 110 °C (63%); (d) BrCH2CO2 Bu, NaH, DMF, 60 °C;
(e) NBS, DCM, rt (48% over two steps); (f) C6H5B(OH)2, Pd(PPh3)4,
K3PO4, toluene, 110 °C (61%); (g) TFA, DCM (100%); (h) Me2N-
HÆHCl, HATU, DIPEA, DMF, RT (100%); (i) BBr3, DCM (42%).
6. (a) Wu, J. Z.; Hong, Z. Curr. Drug Targets–Infect. Dis.
2003, 3, 207; (b) LaPlante, S.; Jakalian, A.; Aubry, N.;
Bousquet, Y.; Ferland, J.-M.; Gillard, J.; Lefebvre, S.;
Poirier, M.; Tsantrizos, Y. S.; Kukolj, G.; Beaulieu, P. L.
Angew. Chem., Int. Ed. 2004, 43, 4306; (c) Tan, S.-L.; He,
Y.; Huang, Y.; Gale, M., Jr. Curr. Opin. Pharmacol. 2004,
4, 465; (d) Beaulieu, P. L.; Tsantrizos, Y. S. Curr. Opin.
Investig. Drugs 2004, 5, 838; (e) Gordon, C. P.; Keller, P.
A. J. Med. Chem. 2005, 48, 1; (f) Condon, S. M.; LaPorte,
M. G.; Herbertz, T. Curr. Med. Chem.–Anti-Infective
Agents 2005, 4, 99; (g) De Francesco, R.; Migliaccio, G.
Nature 2005, 436, 953.
7. Carroll, S. S.; Tomassini, J. E.; Bosserman, M.; Getty, K.;
Stahlhut, M. W.; Eldrup, A. B.; Bhat, B.; Hall, D.; Simcoe,
A. L.; LaFemina, R.; Rutkowski, C. A.; Bohdan, W.; Yang,
Z.; Migliaccio, G.; De Francesco, R.; Kuo, L. C.; MacCoss,
M.; Olsen, D. B. J. Biol. Chem. 2003, 278, 11979.
8. (a) Dhanak, D.; Duffy, K. J.; Johnston, V. K.; Lin-
Goerke, J.; Darcy, M.; Shaw, A. N.; Gu, B.; Silverman,
C.; Gates, A. T.; Nonnemacher, M. R.; Earnshaw, D. L.;
Casper, D. J.; Kaura, A.; Baker, A.; Greenwood, C.;
Gutshall, L. L.; Maley, D.; DelVecchio, A.; Macarron, R.;
Hofmann, G. A.; Alnoah, Z.; Cheng, H.-Y.; Chan, G.;
Khandekar, S.; Keenan, R. M. J. Biol. Chem. 2002, 277,
38322; (b) Chan, L.; Das, S. K.; Reddy, T. J.; Poisson, C.;
Proulx, M.; Pereira, O.; Courchesne, M.; Roy, C.; Wang,
W.; Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba, N.;
Labrecque, D.; Bethell, R.; Hamel, M.; Courtemanche-
Asselin, P.; L’Heureux, L.; David, M.; Nicolas, O.;
Brunette, S.; Bilimoria, D.; Bedard, J. Bioorg. Med. Chem.
Lett. 2004, 14, 793; (c) Chan, L.; Pereira, O.; Reddy, T. J.;
Das, S. K.; Poisson, C.; Courchesne, M.; Proulx, M.;
Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba, N.; Roy,
C.; Nasturica, D.; Moinet, C.; Bethell, R.; Hamel, M.;
L’Heureux, L.; David, M.; Nicolas, O.; Courtemanche-
Asselin, P.; Brunette, S.; Bilimoria, D.; Bedard, J. Bioorg.
Med. Chem. Lett. 2004, 14, 797; (d) Beaulieu, P. L.;
Bousquet, Y.; Gauthier, J.; Gillard, J.; Marquis, M.;
McKercher, G.; Pellerin, C.; Valois, S.; Kukolj, G. J. Med.
Chem. 2004, 47, 6884; for a recent review see (e) Koch, U.;
Narjes, F. Infect. Disorders–Drug Targets 2006, 6, 31.
9. (a) Harper, S.; Pacini, B.; Avolio, S.; Di Filippo, M.;
Migliaccio, G.; Laufer, R.; De Francesco, R.; Rowley, M.;
Narjes, F. J. Med. Chem. 2005, 48, 1314; (b) Harper, S.;
Avolio, S.; Pacini, B.; Di Filippo, M.; Altamura, S.;
hydrolysis of the methyl ester in the presence of BBr3,
gave the trisubstituted azaindole 11b.
Compound 13b was prepared as described in Scheme 3.
The thieno[3,2-b]pyrrole core was synthesized by
condensation of methyl 5-methyl-4-nitrothiophene-2-
carboxylate 19 with benzaldehyde followed by ring-
closure with triethyl phosphite as described in the
literature.17 Introduction of the cyclohexyl ring was
performed by condensation of intermediate 20 with
cyclohexanone and reduction with triethylsilane giving
precursor 21. Introduction of the N,N-dimethylacet-
amide chain at the position N1 was done as described
in the literature.9a Subsequent hydrolysis of the ester
group afforded compound 13b.
In summary, we have described here the SAR performed
in the central core of our initial NS5B polymerase
inhibitor lead 1a. This work led to the discovery of a
novel series of thieno[3,2-b]pyrroles that are potent
allosteric inhibitors of the HCV NS5B polymerase.
Introduction of a polar substituent in the position N1
led to compound 13b which efficiently blocks subgenom-
ic HCV RNA replication in HUH-7 cells at low
micromolar concentration. Further optimization of this
new series of inhibitors will be described in the near
future.
H
N
NO2
a, b
MeO2C
MeO2C
c, d
S
S
20
19
H
N
e, f, g, h
MeO2C
13b
S
21
`
Tomei, L.; Pavonessa, G.; Di Marco, S.; Carfı, A.;
Scheme 3. Reagents and conditions: (a) PhCHO, pyrrolidine, MeOH,
reflux; (b) (EtO)3P, MW (55% over two steps); (c) cyclohexanone,
H3PO4, Ac2O, AcOH, 80 °C (70%); (d) Et3SiH, TFA, rt (100%); (e)
Giuliano, C.; Padron, J.; Bonelli, F.; Migliaccio, G.; De
Francesco, R.; Laufer, R.; Rowley, M.; Narjes, F. J. Med.
Chem. 2005, 48, 4547; (c) Beaulieu, P. L.; Bos, M.;
Bousquet, Y.; Fazal, G.; Gauthier, J.; Gillard, J.; Goulet,
S.; LaPlante, S.; Poupart, M.-A.; Lefebvre, S.; McKer-
t
BrCH2CO2 Bu, NaH, DMF, rt; (f) TFA, DCM (95% over two steps);
(g) Me2NHÆHCl, HATU, DIPEA, DMF, rt; (h) NaOH 2 N, MeOH/
THF (40% over two steps).