T. Honda et al. / Tetrahedron Letters 44 (2003) 3035–3038
3037
Finally, debenzylation of 15 under hydrogenolysis con-
Acknowledgements
ditions over 5% palladium hydroxide on carbon in
MeOH afforded the natural product 1. The spectro-
scopic data of 1, mp 76–78°C (from benzene–cyclohex-
ane) (lit.,4b mp 82–84°C), were in agreement with those
reported.4 Although some difference is observed
between the specific optical rotation of the synthesized
compound 1 {[h]D +158.6 (c 0.8, MeOH); +189.4 (c 1,
CHCl3)} and those reported {lit.,4b [h]D +190.5 (c 1,
MeOH); lit.,5 [h]D +54.1 (c 1, EtOH)} and the accurate
value is still obscure at present, we believe that our
compound has an almost optically pure form based on
the synthetic strategy (Scheme 4).
This work was supported in part by a grant from the
Ministry of Education, Culture, Sports, Science and
Technology of Japan.
References
1. Courley, J. M.; Heacock, R. A.; McInnes, A. G.;
Nikolin, B.; Smith, D. G. J. Chem. Soc., Chem. Commun.
1969, 709–710.
Since the direct formation of the alkene function from
the diketone 11 by the McMurry coupling was found to
be insufficient in terms of the yield, we investigated an
alternative synthetic path to (+)-ipalbidine, in which
elimination of the vic-diol function in 13 was involved
as the key reaction. Thus, the reaction of the diol 13
obtained from 11 by the McMurry coupling with a
shorter reaction time in 66% yield, with trimethyl
orthoformate and PPTS afforded the orthoformate 16,
which, on treatment with acetic anhydride17 brought
about the desired elimination reaction to provide the
olefin 12 in 75% yield from 13 (Scheme 5).
2. Zhou, J.; Zhao, G.; Jin, W.; Zheng, W.; Chi, Z. Chin.
Acad. Sci., Shanghai 1988, 9, 107–111.
3. Chen, X.; Chu, Y. Zhongguo Yaolixue Tongbao 1998, 14,
243–244.
4. For the synthesis of ( )-ipalbidine, see: (a) Govindachari,
T. R.; Sidhaye, A. R.; Viswanathan, N. Tetrahedron
1970, 26, 3829–3831; (b) Wick, A. E.; Bartlett, P. A.;
Dolphin, D. Helv. Chim. Acta 1971, 54, 513–522; (c)
Stevens, R. V.; Luh, Y. Tetrahedron Lett. 1977, 18,
979–982; (d) Howard, A. S.; Gerrans, G. C.; Michael, J.
P. J. Org. Chem. 1980, 45, 1713–1715; (e) Iida, H.;
Watanabe, Y.; Kibayashi, C. J. Chem. Soc., Perkin
Trans. 1 1985, 261–266; (f) Danishefsky, S. J.; Vogel, C.
J. Org. Chem. 1986, 51, 3915–3916; (g) Jefford, C. W.;
Kubota, T.; Zaslona, A. Helv. Chim. Acta 1986, 69,
2048–2061; (h) Sheehan, S. M.; Padwa, A. J. Org. Chem.
1997, 62, 438–439; (i) Ikeda, M.; Shikaura, J.; Maekawa,
N.; Daibuzono, K.; Teranishi, H.; Teraoka, Y.; Oda, N.;
Ishibashi, H. Heterocycles 1999, 50, 31–34.
5. For the synthesis of (+)-ipalbidine, see: Zhujin, L.; Ren-
rong, L.; Qi, C.; Hai, H. Acta Chim. Sinica 1985, 43,
992–995.
6. The specific optical rotations of the synthesized
compound5 and optically resolved compound4b were
reported to exhibit [h]D +54.1 (c 1, EtOH) and [h]D
+190.5 (c 1, MeOH), respectively.
In summary, we have disclosed an alternative total
synthesis of optically active (+)-ipalbidine 1, in which
intramolecular McMurry coupling of the diketone 11
with Ti(0) was employed, as the key reaction, forming a
carbonꢀcarbon double bond directly. Elimination of
the vic-diol of 13, obtained as the major product, from
the McMurry coupling of 11 under different reaction
conditions, also afforded the desired product, success-
fully. The synthetic strategy developed here would be
applicable to the synthesis of biologically active
phenanthroindolizidine and phenanthroquinolizidine
alkaloids.
7. For recent reviews on metathesis, see: (a) Grubbs, R. H.;
Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28,
446–452; (b) Schlock, R. R. Tetrahedron 1999, 55, 8141–
8153; (c) Fu¨rstner, A. Angew. Chem., Int. Ed. Engl. 2000,
39, 3012–3043; (d) Trnka, T. M.; Grubbs, R. H. Acc.
Chem. Res. 2001, 34, 18–29; (e) Hoveyda, A. H.; Schrock,
R. R. Chem. Eur. J. 2001, 7, 945–950.
8. (a) Smith, A. L.; Williams, S. F.; Holmes, A. B. J. Am.
Chem. Soc. 1988, 100, 8696–8698; (b) Ackermann, J.;
Matthes, M.; Tamm, C. Helv. Chim. Acta 1990, 73,
122–132; (c) Saliou, C.; Fleurant, A.; Ce´le´rier, J. P.;
Lhommet, G. Tetrahedron Lett. 1991, 32, 3365–3368.
9. Cravotto, G.; Giovenzana, G. B.; Pilati, T.; Sisti, M.;
Palmisano, G. J. Org. Chem. 2001, 66, 8447–8453.
10. (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. J.
Organomet. Chem. 1995, 497, 195–200; (b) Chatterjee, A.
K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751–1753; (c)
Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R.
H. J. Am. Chem. Soc. 2000, 122, 3783–3784.
Scheme 4. Reagents and conditions: (i) LiAlH4, THF, rt
(86%); (ii) H2, 5% Pd(OH)2–C, MeOH, rt (100%).
11. (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.,
Jr.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791–
799; (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168–8179.
Scheme 5. Reagents and conditions: (i) CH(OMe)3, PPTS,
CH2Cl2, rt; (ii) Ac2O, 140°C (75% from 13).