metal-organic compounds
Re®nement
The dihedral angles between the benzimidazole moieties
(involving N1/N2 and N3/N4) and the phenyl rings (C9±C14
and C23±C28) are 83.0 (2) and 79.4 (2)ꢀ, respectively. The
mean planes of the two benzimidazole moieties form a dihe-
dral angle of 69.7 (1)ꢀ, while the dihedral angle between the
phenyl rings is 1.2 (2)ꢀ.
Re®nement on F2
R[F2 > 2ꢄ(F2)] = 0.051
wR(F2) = 0.133
S = 0.93
6226 re¯ections
316 parameters
H-atom parameters constrained
w = 1/[ꢄ2(Fo2) + (0.0592P)2]
where P = (Fo2 + 2Fc2)/3
(Á/ꢄ)max < 0.001
3
Ê
Áꢅmax = 0.74 e A
3
Ê
1.51 e A
Áꢅmin
=
In the crystal, the N2 and N4 atoms of the benzimidazole
moieties are involved in NÐHÁ Á ÁCl intermolecular hydrogen
bonds with the Cl atoms (Table 2). These intermolecular
hydrogen bonds link the molecules into in®nite one-dimen-
sional chains in the [101] direction.
After checking their presence in the difference map, the positions
of all H atoms were calculated geometrically and allowed to ride on
Ê
their attached atoms (NÐH = 0.86 A and CÐH = 0.93±0.97 A). The
Ê
Ê
highest peak and deepest hole are located 0.91 and 0.82 A, respec-
tively, from the Zn atom. Examination of the structure with
PLATON (Spek, 1990) showed that there were solvent-accessible
3
voids of 34 A in the crystal lattice, but there was no evidence of
Ê
diffuse solvent in these holes.
Experimental
Data collection: SMART (Siemens, 1996); cell re®nement: SAINT
(Siemens, 1996); data reduction: SAINT; program(s) used to solve
structure: SHELXTL (Sheldrick, 1997); program(s) used to re®ne
structure: SHELXTL; molecular graphics: SHELXTL; software used
to prepare material for publication: SHELXTL and PLATON (Spek,
1990).
Solid 2-benzyl-1H-benzimidazole was dissolved in EtOH/H2O. Zinc
dichloride was then added at 343±353 K with stirring and the
resulting solution was re¯uxed for 4±5 h and then cooled. The red
solution obtained was ®ltered and left to evaporate. After one day,
red solids had separated out and were recrystallized from EtOH/H2O.
Single crystals suitable for X-ray analysis were obtained by slow
evaporation from an EtOH solution at room temperature.
The authors would like to thank the Malaysian Government
and Universiti Sains Malaysia for research grant R & D No.
305/PFIZIK/610942. SSSR thanks the Universiti Sains
Malaysia for a Visiting Postdoctoral Fellowship.
Crystal data
3
[ZnCl2(C14H12N2)2]
Mr = 552.78
Monoclinic, P21/n
Dx = 1.438 Mg m
Mo Kꢁ radiation
Cell parameters from 8192
re¯ections
Ê
a = 11.8623 (2) A
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: LN1109). Services for accessing these data are
described at the back of the journal.
ꢂ = 1.92±28.32ꢀ
ꢃ = 1.196 mm
T = 293 (2) K
Ê
b = 16.3674 (1) A
1
Ê
c = 14.1767 (2) A
ꢀ = 111.943 (1)ꢀ
V = 2553.08 (6) A
Z = 4
3
Ê
Slab, red
0.28 Â 0.24 Â 0.20 mm
References
Baenziger, N. C. & Schultz, R. J. (1971). Inorg. Chem. 10, 661±667.
Beauchamp, A. L. (1984). Inorg. Chim. Acta, 91, 33±38.
Bharadwaj, P. K., Schugar, H. J. & Potenza, J. A. (1991). Acta Cryst. C47, 754±
757.
Bouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104,
143±172.
Brown, H. D., Matzuk, A. R., Ilves, I. R., Peterson, L. H., Harris, S. A., Sarett,
L. H., Egerton, J. R., Yakstis, J. J., Campbell, W. C. & Cuckler, A. C. (1961).
J. Am. Chem. Soc. 83, 1764±1765.
Data collection
Siemens SMART CCD area-
detector diffractometer
! scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
Tmin = 0.731, Tmax = 0.796
17 665 measured re¯ections
6226 independent re¯ections
3898 re¯ections with I > 2ꢄ(I)
Rint = 0.073
ꢂ
max = 28.28ꢀ
h = 7 ! 15
k = 21 ! 21
l = 18 ! 18
Laity, H. L. & Taylor, M. R. (1995). Acta Cryst. C51, 1791±1793.
Liljas, A., Kannan, K. K., Bergsten, P. C., Waara, I., Fridborg, K., Strandberg,
B., Caribom, V., Jarup, L., Lovgren, S. & Petef, M. (1972). Nature New Biol.
235(57), 131±137.
Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hill, S. M. N. &
Lockhart, J. C. (1998). Inorg. Chem. 37, 199±207.
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
Zn1ÐN1
Zn1ÐN3
2.039 (2)
2.044 (2)
Zn1ÐCl1
Zn1ÐCl2
2.2575 (8)
2.2626 (8)
Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956±1961.
Preston, P. N. (1974). Chem. Rev. 74, 279±314.
Pujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition
Met. Chem. 13, 423±425.
Sakai, T., Hamada, T., Awata, N. & Watanabe, J. (1989). J. Pharmacobiodyn.
12, 530±536.
N1ÐZn1ÐN3
N1ÐZn1ÐCl1
N3ÐZn1ÐCl1
108.54 (9)
103.32 (7)
116.67 (7)
N1ÐZn1ÐCl2
N3ÐZn1ÐCl2
Cl1ÐZn1ÐCl2
115.44 (7)
104.47 (6)
108.84 (3)
Salas, J. M., Romero, M. A. & Rahmani, A. (1994). Acta Cryst. C50, 510±512.
Sarkar, B. R., Pathak, B., Dutta, S. & Lahiri, S. C. (1984). J. Indian Chem. Soc.
61, 151±153.
È
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
Table 2
Hydrogen-bonding geometry (A, ).
Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1.
Bruker AXS Inc., Madison, Wisconsin, USA.
ꢀ
Ê
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments
Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119±1127.
Tidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra,
C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713±1716.
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
N2ÐH2AÁ Á ÁCl2i
0.86
0.86
2.46
2.55
3.240 (3)
3.314 (3)
152
148
N4ÐH4AÁ Á ÁCl1ii
Symmetry codes: (i) x; 12 y; 21 z; (ii) x
;
y; z
1
2
1
2
1
2
1
.
2
ꢁ
46 Fengli Bei et al. [ZnCl2(C14H12N2)2]
Acta Cryst. (2001). C57, 45±46