Chiral Complexes of RhI Containing Binaphthalene-Core P,S-Heterobidentate Ligands
FULL PAPER
[1]
7.51Ϫ7.59 (m, 5 H), 7.67 (d, J ϭ 8.1 Hz, 1 H, Ar), 7.94 (d, J ϭ
8.1 Hz, 1 H, Ar), 7.97 (d, J ϭ 8.1 Hz, 1 H, Ar), 8.06 (d, J ϭ 8.9 Hz,
1 H, Ar), 8.18 (d, J ϭ 8.9 Hz, 1 H, Ar) ppm. 31P{1H} NMR
C. S. Slone, D. A. Weinberger, C. A. Mirkin, ‘‘The Transition
Metal Coordination Chemistry of Hemilabile Ligands’’, in:
Progress in Inorganic Chemistry (Ed.: K. D. Karlin), John
Wiley and Sons, New York, 1999, vol. 48, p. 233.
O. Pamies, M. Dieguez, G. Net, A. Ruiz, C. Claver, Organomet-
allics 2000, 19, 1488Ϫ1496.
M. Tschoerner, G. Trabesinger, A. Albinati, P. S. Pregosin, Or-
ganometallics 1997, 16, 3447Ϫ3453.
E. Hauptman, R. Shapiro, W. Marshall, Organometallics 1998,
17, 4976Ϫ4982.
1
(CDCl3, 298 K): δ ϭ 27.1 [d, J(Rh,P) ϭ 161.7 Hz] ppm. 13C{1H}
[2]
[3]
`
´
NMR (CDCl3, 298 K): δ ϭ 15.27 (SCH3), 52.99 (allylic CH, NBD),
66.50 (NBD CH2), 71.25 (olefinic CH, NBD), 81.61 (olefinic CH,
NBD), 123.30Ϫ135.09 (32 C, Ar) ppm.
[4]
Preparation of [(S)-2-(Diphenylphosphanyl)-2Ј-(isopropylthio)-1,1Ј-
binaphthalene](2,5-norbornadiene)rhodium(i) Tetrafluoroborate (3b):
[5]
`
X. Verdaguer, A. Moyano, M. A. Pericas, A. Riera, M. A.
Compound 3b was obtained by the procedure described for 3a ex-
cept that after the addition of the ligand (S)-2-(diphenylphos-
phanyl)-2Ј-(isopropylthio)-1,1Ј-binaphthalene an orange solution
was obtained. The solution was stirred for 1 h then concentrated.
The orange precipitate formed after addition of pentane was reco-
´
Maestro, J. Mahıa, J. Am. Chem. Soc. 2000, 122, 10242Ϫ10243.
[6]
H. Nakano, Y. Okuyama, M. Yanagida, H. Hongo, J. Org.
Chem. 2001, 66, 620Ϫ625.
[7]
D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M.
´
R. Gagne, J. Org. Chem. 1999, 64, 2994Ϫ2995.
[8]
1
E. Hauptmann, P. J. Fagan, W. Marshall, Organometallics
vered by filtration. Yield 99 mg (62%). H NMR (CDCl3, 298 K):
1999, 18, 2061Ϫ2073.
S. Gladiali, A. Dore, D. Fabbri, Tetrahedron: Asymmetry 1994,
5, 1143Ϫ1146.
J. Kang, S. H. Yu, J. I. Kim, H. G. Cho, Bull. Korean Chem.
Soc. 1995, 16, 439Ϫ443.
S. Gladiali, S. Medici, G. Pirri, S. Pulacchini, D. Fabbri, Can.
J. Chem. 2001, 79, 670Ϫ678.
P. Pertici, F. D’Arata, C. Rosini, J. Organomet. Chem. 1996,
515, 163Ϫ171.
δ ϭ 1.18 (d, J ϭ 6.6 Hz, 3 H, CH3), 1.28 (d, J ϭ 6.6 Hz, 3 H,
CH3), 1.50 [s, 2 H, CH2 (NBD)], 3.88 (sept, J ϭ 6.6 Hz, 1 H, CH),
4.00 [s, 2 H, allylic CH (NBD)], 4.50 [s, 2 H, olefinic CH (NBD)],
4.6 [s, 2 H, olefinic CH (NBD)], 5.95 (d, J ϭ 8.1 Hz, 1 H, Ar),
6.71Ϫ6.80 (m, 4 H, Ar), 6.94 (d, J ϭ 8.4 Hz, 1 H, Ar), 7.21Ϫ7.58
(m, 11 H, Ar), 7.73 (d, J ϭ 7.8 Hz, 1 H, Ar), 7.98 (m, 2 H, Ar),
8.14 (d, J ϭ 8.7 Hz, 1 H, Ar), 8.27 (d, J ϭ 8.7 Hz, 1 H, Ar) ppm.
[9]
[10]
[11]
[12]
[13]
1
31P{1H} NMR (CDCl3, 298 K): δ ϭ 26.8 [d, J(Rh,P) ϭ 161 Hz]
ppm. [α]2D5 ϭ Ϫ386 (c ϭ 0.5, CHCl3).
K. Toriumi, T. Ito, H. Takaya, T. Souchi, R. Noyori, Acta
Crystallogr., Sect. B 1982, 38, 807Ϫ812.
[14] [14a] F. Grepioni, G. Cojazzi, S. M. Draper, N. Scully, D. Braga,
Organometallics 1998, 17, 296Ϫ307. [14b] D. Braga, F. Grepioni,
in: Current Challenges on Large Supramolecular Assemblies
(Ed.: G. Tsoucaris), Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1998, p. 173.
X-ray Structural Determination of 3a: X-ray diffraction data for 3a
were collected at 293 K with a Bruker diffractometer (SMART)
˚
(Mo-Kα radiation, λ ϭ 0.71073 A) and corrected for absorption.
C41H32BCl3F4PRhS, Mr ϭ 883.77, triclinic, space group P1, a ϭ
˚
9.1724(7), b ϭ 10.7757(7), c ϭ 10.9453(8) A, α ϭ 68.456(2), β ϭ
[15]
3
A. Albinati, J. Eckert, P. S. Pregosin, H. Rüegger, R. Salzmann,
C. Stössel, Organometallics 1997, 16, 579Ϫ590.
M. Valentini, K. Selvakumar, M. Wörle, P. S. Pregosin, J. Or-
ganomet. Chem. 1999, 587, 244Ϫ251.
E. Rotondo, G. Battaglia, C. G. Arena, F. Faraone, J. Or-
ganomet. Chem. 1991, 419, 399Ϫ402.
S. Gladiali, A. Dore, D. Fabbri, S. Medici, G. Pirri, S. Pulacch-
ini, Eur. J. Org. Chem. 2000, 3, 2861Ϫ2865.
A. Miyashita, H. Takaya, T. Souchi, R. Noyori, Tetrahedron
1984, 40, 1245. In a previous work we failed to reproduce
this result.
˚
88.282(2), γ ϭ 72.591(2)°, V ϭ 956.2(1) A , Z ϭ 1, dc
ϭ
1.535 g·cmϪ3, µ ϭ 0.802 mmϪ1, F(000) ϭ 446, 11681 reflections
measured, refinement on F2 (8621 independent reflections) for 446
parameters, wR2 (on F2, all data) ϭ 0.0906, R1 [on F, I Ͼ 2σ(I)] ϭ
0.0358. The computer program SHELXL-97[20] was used for struc-
ture solution and refinement. All non-H atoms were treated aniso-
tropically. The naphthyl moieties were refined as rigid groups. Hy-
drogen atoms were added in calculated positions and refined riding
on their respective C atoms. For all molecular representations the
graphic program SCHAKAL99[21] was used. Intermolecular inter-
actions were calculated by means of the program PLATON.[22]
CCDC-189656 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge at
www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge
[16]
[17]
[18]
[19]
[20]
G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
Determination; University of Göttingen, Göttingen, Germany,
1997.
E. Keller, SCHAKAL99, Graphical Representation of Molecular
Models; University of Freiburg, Germany, 1999.
PLATON: A. L. Spek, Acta Crystallogr., Sect. A 1990, 46, C31.
[21]
[22]
CB2 1EZ, UK [Fax: (internat.)
deposit@ccdc.cam.ac.uk].
ϩ 44-1223/336-033; E-mail:
Received July 14, 2002
[I02384]
Eur. J. Inorg. Chem. 2003, 556Ϫ561
561