Me2N
NMe2
R
We thank Dr P. R. Raithby, Dr H. R. Powell and C. Wilson
for carrying out the X-ray structure determination, the EPSRC
and Lilly Industries for a CASE studentship for S. R. M., and
Duckhee Lee for the experiment with the Weinreb amide.
R
R
R
5
R–R = (CH2)5
8a R = Me
Notes and References
v
i, ii
† E-mail: if10000@cam.ac.uk
‡ Crystal data for 5: C18H34N2, FM
or iv
iii
= 278.47, monoclinic, P2(1)/n,
a = 6.3930(6), b = 13.3934(11), c = 20.962(2) Å, b = 91.6833(11)°,
T = 293(2) K, Z = 4, m = 0.443 mm21, 5035 reflections collected, of
which 3621 were independent, R1 = 0.0884, wR2 = 0.1811. CCDC
182/765.
Me2N
R
R
Me2N
R
Me2N
R
R
i, ii
v
R
R
R
R
R
R
NMe2
R
NMe2
NMe2
1 M. V. George, D. J. Peterson and H. Gilman, J. Am. Chem. Soc., 1960,
82, 403; A. S. Guram and G. A. Krafft, in Encyclopaedia of Reagents for
Organic Synthesis, ed. L. A. Paquette, Wiley, Chichester, 1995, p. 2113;
I. Fleming, in Synthetic Methods of Organometallic and Inorganic
Chemistry (Hermann/Brauer), ed. N. Auner and U. Klingebiel, Georg
Thieme, Stuttgart, 1996, vol. 2, p. 167.
11a
94% from 11a
78% from 11b
97%
83% from 5
12a
10a
R–R = (CH2)5
42%
77% from 11b
b
b
b R = Me
vi
vi
vi
2 B. F. Bonini, F. Busi, R. C. de Laet, G. Mazzanti, J.-W. J. F. Thuring,
P. Zani and B. Zwanenburg, J. Chem. Soc., Perkin Trans. 1, 1993, 1011;
B. F. Bonini, M. Comes-Franchini, G. Mazzanti, U. Passamonti,
A. Ricci and P. Zani, Synthesis, 1995, 92. For some related reactions see
also: J. Kang, J. H. Lee, K. S. Kim, J. U. Jeong and C. Pyun, Tetrahedron
Lett., 1987, 28, 3261; A. G. Brook, A. Baumegger and A. J. Lough,
Organometallics, 1992, 11, 310; K. Yamamoto, A. Hayashi, S. Suzuki
and J. Tsuji, Organometallics, 1987, 6, 974; A. Ricci, A. Degl’Inno-
centi, S. Chimichi, M. Fiorenza, G. Rossini and H. J. Bestmann, J. Org.
Chem., 1985, 50, 130; F. Jin, B. Jiang and Y. Xu, Tetrahedron Lett.,
1992, 33, 1221; M. Nakada, S. Nakamura, S. Kobayashi and M. Ohno,
Tetrahedron Lett., 1991, 32, 4929; P. Bourgeois, J. Dunogue`s and
N. Duffaut, J. Organomet. Chem., 1974, 80, C25; J.-P. Picard, R. Calas,
J. Dunogue`s, N. Duffaut, J. Gerval and P. Lapouyade, J. Org. Chem.,
1979, 44, 420; P. Bourgeois, J. Organomet. Chem., 1974, 76, C1;
N. Kise, H. Kaneko, N. Uemoto and J. Yoshida, Tetrahedron Lett.,
1995, 36, 8839.
3 I. Fleming, M. Solay and F. Stolwijk, J. Organomet. Chem., 1996, 521,
121.
4 I. Fleming and U. Ghosh, J. Chem. Soc., Perkin Trans. 1, 1994, 257.
5 S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815.
6 D. Lee, Ph.D., Thesis, Cambridge, 1997.
7 D. A. Bravozhitivitovsk, S. D. Pigarev, I. D. Kalikhman, O. A.
Vyazankina and N. S. Vyazankin, J. Organomet. Chem., 1983, 114,
51.
8 P. R. Raithby, H. R. Powell and C. Wilson, unpublished work,
Cambridge, 1994.
NMe2
O
R
O
R
R
R
R
R
R
R
O
92% from 11a, 82% from 10a
79% from 8a
6
13a
93%
56%
9a
b
Scheme 3 Reagents and conditions: i, (CO2H)2, recrystallise from EtOAc;
ii, NaOH, H2O; iii, CH2NCHCO2Me, 60 °C, 24 h; iv, PtO2, MeOH, 50 °C,
15 min; v, Pd/C, MeOH, room temp., 4 h; vi, 3 m HCl, 70 °C, 18 h
the E isomers 11a, b, respectively, is actually better carried out
using a short treatment with Adams’ catalyst. The enediamines,
both the Z and E isomers, gave oxalate salts, but simple
recrystallisation of these salts, followed by basification, gave
the isomers 10a and 10b of the enediamines in which the double
bond had moved. All of the enediamines could be hydrolysed to
the a-amino ketones 6 and 9a, but all attempts to reduce any of
them to the saturated vicinal diamine failed. Most remarkable
amongst our attempts was the oxidation of the enediamines 5 or
11a using hydrogen and palladium on charcoal, which gave the
dienediamine 12a. Needless to say, this oxidation was better
performed without the hydrogen, and the first step, when carried
out on the Z isomers, appears to be isomerisation to the E
isomers. Hydrolysis of the dienediamines 12 gave the
a-diketones 13.
9 K. C. Brannock, A. Bell, R. D. Burpitt and C. A. Kelly, J. Org. Chem.,
1964, 29, 801; K. C. Brannock, R. D. Burpitt, V. W. Goodlett and
J. G. Thweatt, J. Org. Chem., 1964, 29, 813; I. Fleming and J. Harley-
Mason, J. Chem. Soc., 1964, 2165.
10 A. Ogawa, N. Takami, M. Sekiguchi, I. Ryu, N. Kambe and N. Sonoda,
J. Am. Chem. Soc., 1992, 114, 8729.
The reductive coupling of the amide carbonyls resembles the
McMurry coupling of aldehydes and ketones, and even more
closely the reductive coupling of amides using samarium and its
iodide,10 and other lanthanides and their salts.11 While an
electron transfer mechanism might be operating in our reaction,
the very different reagent that we have used led us to suspect
otherwise. We describe our investigations into the mechanism
of the coupling in the following paper.
11 A. Ogawa, T. Nanke, N. Takami, M. Sekiguchi, N. Kambe and
N. Sonoda, Appl. Organomet. Chem., 1995, 9, 461.
Received in Liverpool, UK, 12th November 1997; revised manuscript
received, 21st January 1998; 8/00648B
712
Chem. Commun., 1998