C O M M U N I C A T I O N S
Scheme 1
also promoted the copolymerization to give the copolymer with a
high molecular weight (Mn ) 450 000) in a lower yield (run 5). It
is attributed to a much slower insertion of CO into the Pd-π-allyl
bond than that into the Pd-Me bond.11 2-Phenyl-1-methylene-
cyclopropanes having Me or F substituents on the phenyl ring also
undergo copolymerization to give the corresponding polyketones
(runs 6, 7).
In summary, we found the Pd-complex-catalyzed ring-opening
copolymerization of 2-aryl-1-methylenecyclopropanes with CO to
afford the new polymers. The polymer growth, including alternating
insertion of the monomers and C-C bond activation of the three-
membered ring of the polymer, is well-regulated by the Pd complex.
Table 1. Copolymerization of 2-Aryl-1-methylenecyclopropanes
Acknowledgment. The present work was partly supported by
Sumitomo Foundation.
with CO Catalyzed by Pd Complexesa
time
(h)
yield
(%)
Supporting Information Available: Experimental procedures for
polymerization and IR and NMR data of the products (PDF). This
runst
catalyst
M (M /M )b
n w n
1c
2c
3c
4
PdCl(Me)(bpy) + NaBARF
PdCl(Me)(bpy) + NaBF4
PdCl(Me)(bpy) + AgOTf
PdCl(Me)(bpy)
[(π-PhCHCHCH2)Pd(bpy)]BF4
PdCl(Me)(bpy) + AgOTf
PdCl(Me)(bpy) + AgOTf
3
3
3
66
15
3
84
85
92
60
37
87
77
19000 (1.44)
20000 (2.17)
23000 (3.19)
17000 (1.72)
450000 (2.40)
28000 (4.57)
34000 (3.65)
References
(1) (a) Drent, E.; Budzelaar, P. H. M. Chem. ReV. 1996, 96, 663. (b) Sen, A.
Acc. Chem. Res. 1993, 26, 303. (c) Sperrle, M.; Consiglio, G. Chem. Ber.
1997, 130, 1557.
5
6c,d
7c,e
3
(2) (a) Brookhart, M.; Rix, F. C.; DeSimone, J. M.; Barborak, J. C. J. Am.
Chem. Soc. 1992, 114, 5894. (b) Brookhart, M.; Wagner, M. I.; Balavoine,
G. G. A.; Haddou, H. A. J. Am. Chem. Soc. 1994, 116, 3641. (c) Bronco,
S.; Consiglio, G.; Hutter, R.; Batistini, A.; Suter, U. W. Macromolecules
1994, 27, 4436. (d) Sesto, B.; Consiglio, G. J. Am. Chem. Soc. 2001,
123, 4097. (e) Nozaki, K.; Sato, N.; Takaya, H. J. Am. Chem. Soc. 1995,
117, 9911. (f) Nozaki, K.; Komaki, H.; Kawashima, Y.; Hiyama, T.;
Matsubara, T. J. Am. Chem. Soc. 2001, 123, 534.
a The reaction conditions: [Pd] ) 25 mM, [1a] ) 2.5 M, CO pressure:
1 atm, at rt in CH3CN unless otherwise stated. b Determined by GPC in
THF vs polystyrene standards. c [Pd]:[Ag (or Na)] ) 1:1.2. d Monomer 1b.
[Pd] ) 12.5 mM, [1b] ) 1.25 M, in THF. e Monomer 1c. [Pd] ) 12.5
mM, [1c] ) 1.25 M, in THF.
(3) Co-complex-catalyzed ring-opening copolymerization of aziridine with
N-containing three-membered ring with CO. See: Jia, L.; Ding, E.;
Anderson, W. R. Chem. Commun. 2001, 1436.
1-methylenecyclopropanes containing selective 2,1-insertion of Cd
C double bond of the monomer into the π-allyl-Pd bond.5a
Homopolymerization of methylenecylopropanes catalyzed by met-
allocene compounds and by Ni complex takes place via 1,2-
insertion, similarly to the copolymerization in this study.5b,8
Expansion of the three-membered ring during the polymerization
renders insertion of 2-phenyl-1-methylenecyclopropane followed
by rearrangement of the growing polymer thermodynamically
favorable. To examine the effect of the monomer structure on the
reaction rate, we conducted kinetic measurement of the polymer-
ization. The reaction obeys first-order kinetics with respect to the
concentration of 2-phenyl-1-methylenecyclopropane at -30 to 0
°C. The observed rate constant at 0 °C in THF-d8 is 5.4 × 10-4
s-1 with catalyst concentration of 12.5 mM (kobsd/[catalyst] ) 4.4
× 10-5 s-1(cat mmol)-1). The first-order kinetics indicates that the
rate-determining step of the polymer growth is the insertion of
methylenecyclopropane into the Pd-C bond rather than CO
insertion, similarly to most alkene-CO copolymerization reported
thus far.9 It is contrasted with the Rh-catalyzed copolymerization
of arylallenes with CO although both allene and methylenecyclo-
propane have a more reactive CdC double bond than alkene.10
Table 1 summarizes the results of the polymerization. AgOTf
and NaBF4 are also effective as the cocatalyst for the copolymer-
ization (runs 2, 3), suggesting that the cationic Pd complexes act
as the efficient catalysts for the ring-opening copolymerization.
PdCl(Me)(bpy) catalyzes the polymerization in the absence of the
additives, but in a much lower rate (run 4). π-Allyl-Pd complex
(4) Kettunen, M.; Abu-Surrah, A. S.; Repo, T.; Leskela¨, M. Polym. Int. 2001,
50, 1223.
(5) (a) Takeuchi, D.; Kim, S.; Osakada, K. Angew. Chem., Int. Ed. 2001, 40,
2685. (b) Takeuchi, D.; Osakada, K. Submitted for publication.
(6) Selected 13C{1H} NMR data of Ia and the structurally analogous
compounds indicated the polymer structure unambiguously. Ia: δ 35.7,
41.8, 42.2, 42.7 (CH2), 41.1, 41.4, 50.3, 51.3 (CH), 123.5, 124.9 (dCH2),
126.3, 126.9 (p-Ph), 127.8, 127.9, 128.0, 128.2, 128.6 (o-, m-Ph), 138.6,
141.5 (ipso-Ph), 144.8, 145.2, 150.1, 150.4, 150.9 (Cd), and 198.6, 198.8,
199.9, 200.1, 200.7 (CdO). CH2dCHCHPhCH2C(dO)CH3: δ 30.4 (CH3),
44.3 (CH), 48.7 (CH2), 114.4 (CH2d), 140.4 (dCH), 126.4 (p-Ph), 127.4-
128.2 (o-, m-Ph), 142.6 (ipso-Ph), and 206.7 (CdO). CH2dCHCH2-
CHPhC(dO)CH3: δ 28.99 (CH2Me), 36.1 (CH2), 59.4 (CH), 116.6 (CH2d
), 135.8 (dCH), 127.3 (p-Ph), 128.3-128.9 (o-, m-Ph), 138.4 (ipso-Ph),
and 207.6 (CdO). As for the last compound, see: Molander, G. A.;
Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 3339.
(7) (a) Resconi, L.; Piemontesi, F.; Franciscono, G.; Abis, L.; Fiorani, T. J.
Am. Chem. Soc. 1992, 114, 1025. (b) Guo, Z.; Swenson, D. C.; Jordan,
R. F. Organometallics 1994, 13, 1424. (c) Yang, X.; Stern, C. L.; Marks,
T. J. J. Am. Chem. Soc. 1994, 116, 10015. (d) Ankianiec, B. C.; Christou,
V.; Hardy, D. T.; Thomson, S. K.; Yough, G. B. J. Am. Chem. Soc. 1994,
116, 9963. (e) Flood, T. C.; Statler, J. A. Organometallics 1984, 3, 1795.
(8) (a) Yang, X.; Seyam, A. M.; Fu, P.-F.; Marks, T. J. Macromolecules 1994,
27, 4625. (b) Jia, L.; Yang, X.; Yang, S.; Marks, T. J. J. Am. Chem. Soc.
1996, 118, 1547. (c) Jia, L.; Yang, X.; Seyam, A. M.; Albert, I. D. L.;
Fu, P.-F.; Yang, S.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 7900.
(9) (a) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118,
4746. (b) Shultz, C. S.; Ledford, J.; DeSimone, J. M.; Brookhart, M. J.
Am. Chem. Soc. 2000, 122, 6531.
(10) (a) Osakada, K.; Choi, J.-C.; Yamamoto, T. J. Am. Chem. Soc. 1997,
119, 12390. (b) Choi, J.-C.; Yamaguchi, I.; Osakada, K.; Yamamoto, T.
Macromolecules 1998, 31, 8731.
(11) (a) Groen, J. H.; Elsevier, C. J.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L.
Organometallics 1996, 15, 3445. (b) Milani, B.; Paronetto, F.; Zangrando,
E. J. Chem. Soc., Dalton Trans. 2000, 3055.
JA017460S
9
J. AM. CHEM. SOC. VOL. 124, NO. 5, 2002 763