PtII Tetradentate N O Chelates Complexes
1263 1272
2
2
[1] M. A. Baldo, D. F. O×Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
Thompson, S. R. Forrest, Nature 1998, 395, 151 154.
In the devices containing complex 1 as dopant, only EL
from Bepp2 was observed at 2% (device A), suggesting
ineffective host dopant Fˆrster energy transfer. However,
this would be surprising because there is excellent overlap
between the host-emission and dopant-absorption spectra, so
the shorter-range Dexter process is presumably dominant in
the Bepp2:1 system. At 10% dopant level of 1 (device B),
yellow EL from 1 only was visible at low voltages but
contribution from the Bepp2 host became noticeable around
10 V (Figure 6). This is consistent with the long electro-
phosphorescent lifetime exhibited by 1, which leads to
saturated triplet exciton population at high voltages so that
energy transfer from Bepp2 excitons becomes blocked. While
the abundance of p electrons in 1 may be beneficial for charge
mobility, the favorable formation of dimeric assemblies (see
crystal lattice of 1) and the presence of pendant phenyl
substituents can facilitate intermolecular quenching (includ-
ing self-quenching) processes. This may explain the inferior
brightness and efficiency of devices derived from dopant 1.
The employment of ancillary ligands containing bulky
substituents has been demonstrated to be advantageous for
electrophosphorescent OLEDs with regards to the suppres-
sion of self-quenching activities[24] and the maintenance of
amorphous films.[25] In this work, modification of the diimine
fragment from Ph2phen in 1 to tBu2bpy in 2 results in
substantially improved OLED performance. At 0.3% dopant
level of 2, (device C), long-range Fˆrster energy transfer from
host excitons appears considerably more efficient compared
to 1 and EL from 2 at lmax 540 nm is observed, although the
Bepp2 emission at 450 nm remains prominent. Excellent
maximum luminance (9330 cdcmÀ2) and power efficiency
(1.44 lmWÀ1) have been realized, and this can be ascribed to
the molecular structure of 2, which may mediate effective
charge transport to yield relatively balanced charge recombi-
nation within the 2-doped Bepp2 layer without promoting
quenching mechanisms.
[2] a) J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Appl.
Phys. Lett. 1994, 65, 2124 2126; b) S. Hoshino, H. Suzuki, Appl. Phys.
Lett. 1996, 69, 224 226; c) X. Zhang, R. Sun, Q. Zheng, T. Kobayashi,
W. Li, Appl. Phys. Lett. 1997, 71, 2596 2598; d) Y. Ma, H. Zhang, J.
Shen, C. M. Che, Synth. Met. 1998, 94, 245 248; e) M. D. McGehee, T.
Bergstedt, C. Zhang, A. P. Saab, M. B. O×Regan, G. C. Bazan, V. I.
Srdanov, A. J. Heeger, Adv. Mater. 1999, 11, 1349 1354.
[3] a) D. F. O×Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl.
Phys. Lett. 1999, 74, 442 444; b) V. Cleave, G. Yahioglu, P. Le Barny,
R. H. Friend, N. Tessler, Adv. Mater. 1999, 11, 285 288; c) C. Adachi,
M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C.
Kwong, Appl. Phys. Lett. 2001, 78, 1622 1624.
[4] a) S. C. Chan, M. C. W. Chan, Y. Wang, C. M. Che, K. K. Cheung, N.
Zhu, Chem. Eur. J. 2001, 7, 4180 4189; b) W. Lu, B. X. Mi, M. C. W.
Chan, Z. Hui, N. Zhu, S. T. Lee, C. M. Che, Chem. Commun. 2002,
206 207.
[5] a) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R.
Forrest, Appl. Phys. Lett. 1999, 75, 4 6; b) M. A. Baldo, M. E.
Thompson, S. R. Forrest, Nature 2000, 403, 750 753; c) Y. Wang, N.
Herron, V. V. Grushin, D. LeCloux, V. Petrov, Appl. Phys. Lett. 2001,
79, 449 451; d) C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich,
M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2001,
79, 2082 2084; e) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-
Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E.
Thompson, J. Am. Chem. Soc. 2001, 123, 4304 4312; f) X. Gong,
M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger,
Adv. Mater. 2002, 14, 581 585.
[6] a) C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, Appl. Phys.
Lett. 2000, 77, 904 906; b) C. Adachi, M. A. Baldo, M. E. Thompson,
S. R. Forrest, J. Appl. Phys. 2001, 90, 5048 5051; c) M. Ikai, S. Tokito,
Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 2001, 79, 156 158;
d) B. W. D×Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R.
Forrest, Adv. Mater. 2002, 14, 1032 1036.
[7] a) C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913 915;
b) C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65,
3610 3616.
[8] a) C. H. Chen, J. Shi, Coord. Chem. Rev. 1998, 171, 161 174; b) J.
Kido, Y. Iizumi, Appl. Phys. Lett. 1998, 73, 2721 2723; c) L. S.
Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J.
Marshall, D. Fogarty, P. E. Burrows, S. R. Forrest, J. Am. Chem. Soc.
2001, 123, 6300 6307.
[9] P. E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest, M. E.
Thompson, Appl. Phys. Lett. 1994, 64, 2718 2720.
A device that produces EL from 2 only was targeted. When
the concentration of 2 was increased to 2%, the Bepp2
emission is drastically reduced and the EL from 2 became
dominant. However, this was achieved at the expense of
diminished device function, which may be accredited to
enhanced aggregation of dopant molecules leading to inter-
molecular quenching (see continuously stacked layers in
crystal lattice of 2) or formation of crystalline domains. In
summary, the overall brightness and performance of devices
derived from the tert-butyl substituted complex 2 is superior
to those using the phenyl derivative 1. While the perform-
ances of these devices have yet to be optimized, it is our
intention in this work to highlight the potential merit of this
class of electrophosphorescent materials in OLED applica-
tions.
[10] a) T. A. Hopkins, K. Meerholz, S. Shaheen, M. L. Anderson, A.
Schmidt, B. Kippen, A. B. Padias, H. K. Hall, Jr., N. Peyghambarian,
¬
N. R. Armstrong, Chem. Mater. 1996, 8, 344 351; b) N. Donze, P.
¬
Pechy, M. Gr‰tzel, M. Chaer, L. Zuppiroli, Chem. Phys. Lett. 1999,
315, 405 410; c) L. S. Sapochak, F. E. Benincasa, R. S. Schofield, J. L.
Baker, K. K. C. Riccio, D. Fogarty, H. Kohlmann, K. F. Ferris, P. E.
Burrows, J. Am. Chem. Soc. 2002, 124, 6119 6125.
[11] a) H. Kunkely, A. Vogler, J. Am. Chem. Soc. 1990, 112, 5625 5627;
b) K. T. Wan, C. M. Che, K. C. Cho, J. Chem. Soc. Dalton Trans. 1991,
1077 1080; c) W. B. Connick, D. Geiger, R. Eisenberg, Inorg. Chem.
1999, 38, 3264 3265; d) S. W. Lai, M. C. W. Chan, T. C. Cheung, S. M.
Peng, C. M. Che, Inorg. Chem. 1999, 38, 4046 4055; e) W. Lu,
M. C. W. Chan, K. K. Cheung, C. M. Che, Organometallics 2001, 20,
2477 2486.
[12] a) R. C. Kwong, S. Sibley, T. Dubovoy, M. A. Baldo, S. R.
Forrest, M. E. Thompson, Chem. Mater. 1999, 11, 3709 3713;
b) R. C. Kwong, S. Lamansky, M. E. Thompson, Adv. Mater. 2000,
12, 1134 1138.
[13] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Labo-
ratory Chemicals, 2nd ed., Pergamon, Oxford, 1983.
Acknowledgements
[14] S. Routier, V. Joanny, A. Zaparucha, H. Vezin, J.-P. Catteau, J.-L.
Bernier, C. Bailly, J. Chem. Soc. Perkin Trans. 1998, 863 868.
[15] R. Ballardini, G. Varani, M. T. Indelli, F. Scandola, Inorg. Chem. 1986,
25, 3858 3865.
We are grateful for financial support from the University of Hong Kong,
the Croucher Foundation (Hong Kong), Research Grants Council of Hong
Kong SAR, China [HKU 7298/99P], and the Innovation and Technology
Commission of the Hong Kong SAR Government (ITS/053/01). We also
thank Dr. S. C. Yu for technical assistance.
[16] This falls at the outer limit of the range of intermetal distances (2.7
3.5 ä) reported in −monomeric× platinum(ii) extended-linear-chain
¬
structures: a) J. J. Novoa, G. Aullon, P. Alemany, S. Alvarez, J. Am.
Chem. Eur. J. 2003, 9, No. 6
¹ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0947-6539/03/0906-1271 $ 20.00+.50/0
1271