Communication
ChemComm
G. Faita and P. Quadrelli, Chem. Rev., 2018, 118, 2080; (d) M. D. Delost,
D. T. Smith, B. J. Anderson and J. T. Njardarson, J. Med. Chem., 2018,
61, 10996.
2 (a) W. Song, S. Wang and W. Tang, Chem. – Asian J., 2017, 12, 1027;
(b) Y. Yang and B. Yu, Chem. Rev., 2017, 117, 12281.
3 For reviews, see: (a) A. Deiters and S. F. Martin, Chem. Rev., 2004,
104, 2199; (b) J. A. Marco, M. Carda, J. Murgab and E. Falomir,
Scheme 3 Control experiments.
˜
´
Tetrahedron, 2007, 63, 2929; (c) M. G. Nu´nez, P. Garcıa, R. F. Moro
´
and D. Dıez, Tetrahedron, 2010, 66, 2089; (d) V. Eschenbrenner-Lux,
overall yield and 5 : 1 dr after two steps of reduction and cycliza-
tion operations. Again, this rigid spirocyclic compound is struc-
turally new, and was prepared for the first time. The relative
configurations of the above products were unequivocally
assigned by the nuclear Overhauser effect analysis.12
Finally, to gain insights into this annulation process, we
conducted the following control experiments (Scheme 3). When
carrying out the reaction of 1a and 2a at room temperature,
we isolated the C-alkylation intermediate 15 in 85% yield. After
resubmitting this intermediate to the standard conditions, the
final product 3a was obtained in 83% yield. Furthermore,
adding a stoichiometric amount of TEMPO to the above con-
ditions did not significantly affect the reaction yields. These
results indicated that the tandem process probably proceeded
via a C–C - C–O bond-forming sequence, wherein both bonds
were more likely formed via a nucleophilic substitution
mechanism instead of a radical pathway.8,9
In conclusion, we have developed a highly efficient and
general [5+1] annulation reaction of 4-bromo- or 4-mesyloxy-
but-2-enyl peroxides with various carbon nucleophiles for the
facile synthesis of a wide range of 2,2-disubstituted dihydro-
pyrans in high yields. Unlike previous strategies, this new
approach utilized the peroxides as unique five-atom bielectro-
philic synthons to participate in the C–C and subsequent
umpolung C–O bond-forming reactions with C1 nucleophiles,
thus providing a distinct strategy to access the target dihydro-
pyrans under operationally simple conditions. We also
demonstrated that these dihydropyran products were readily
synthesized on a gram-scale and could be flexibly transformed
into other biologically important six-membered oxacycles such
as tetrahydropyran, pyranone, structurally novel spirocyclic
b-lactone, and active ketal products in 1–2 steps.
K. Kumar and H. Waldmann, Angew. Chem., Int. Ed., 2014, 53, 11146;
(e) R. Jacques, R. Pal, N. A. Parker, C. E. Sear, P. W. Smith,
A. Ribaucourt and D. M. Hodgson, Org. Biomol. Chem., 2016,
14, 5875.
4 For representative examples, see: (a) S. D. Burke, R. A. Ng,
J. A. Morrison and M. J. Alberti, J. Org. Chem., 1998, 63, 3160;
(b) S. Ma and W. Gao, J. Org. Chem., 2002, 67, 6104; (c) B. Schmidt
´
˜
and S. Nave, J. Org. Chem., 2006, 71, 7364; (d) S. Catalan-Munoz,
C. A. Mu¨ller and S. V. Ley, Eur. J. Org. Chem., 2010, 183;
(e) D. K. Mohapatra, P. P. Das, M. R. Pattanayak and J. S. Yadav,
Chem. – Eur. J., 2010, 16, 2072; ( f ) K.-G. Ji, H.-T. Zhu, F. Yang,
A. Shaukat, X.-F. Xia, Y.-F. Yang, X.-Y. Liu and Y.-M. Liang, J. Org.
Chem., 2010, 75, 5670; (g) B. Guo, G. Schwarzwalder and J. T.
Njardarson, Angew. Chem., Int. Ed., 2012, 51, 5675; (h) A. Zhdanko
and M. E. Maier, Eur. J. Org. Chem., 2014, 3411.
5 (a) H. Robert, B. Garrigues and J. Dubac, Tetrahedron Lett., 1998,
´
39, 1161; (b) C. Bolm and O. Simic, J. Am. Chem. Soc., 2001,
´
`
123, 3830; (c) C. Bataille, G. Begin, A. Guillam, L. Lemiegre, C. Lys,
J. Maddaluno and L. Toupet, J. Org. Chem., 2002, 67, 8054;
(d) C. Bolm, M. Verrucci, O. Simi´c, P. G. Cozzi, G. Raabe and
´
H. Okamura, Chem. Commun., 2003, 2826; (e) A. Chretien,
I. Chataigner and S. R. Piettre, Tetrahedron, 2005, 61, 7907;
( f ) N. Momiyama, H. Tabuse and M. Terada, J. Am. Chem. Soc.,
2009, 131, 12882; (g) K. Fujiwara, T. Kurahashi and S. Matsubara,
`
J. Am. Chem. Soc., 2012, 134, 5512; (h) L. Liu, H. Kim, Y. Xie, C. Fares,
P. S. J. Kaib, R. Goddard and B. List, J. Am. Chem. Soc., 2017,
139, 13656.
6 (a) G. S. Viswanathan, J. Yang and C.-J. Li, Org. Lett., 1999, 1, 993;
´
(b) A. P. Dobbs and S. Martinovic, Tetrahedron Lett., 2002, 43, 7055;
´
´
(c) P. O. Miranda, D. D. Dıaz, J. I. Padron, J. Bermejo and
´
V. S. Martın, Org. Lett., 2003, 5, 1979; (d) S. P. Fearnley and
P. Lory, Org. Lett., 2007, 9, 3507; (e) M. P. Castaldi, D. M. Troast
and J. A. Porco, Org. Lett., 2009, 11, 3362; ( f ) R. F. Lambert,
R. J. Hinkle, S. E. Ammann, Y. Lian, J. Liu, S. E. Lewis and
R. D. Pike, J. Org. Chem., 2011, 76, 9269; (g) V. Weidmann,
J. Ploog, S. Kliewer, M. Schaffrath and W. Maison, J. Org. Chem.,
2014, 79, 10123.
7 (a) M. Gao, Y. Zhao, C. Zhong, S. Liu, P. Liu, Q. Yin and L. Hu, Org.
Lett., 2019, 21, 5679; (b) B. Wu, J. Yang, M. Gao and L. Hu, Org. Lett.,
2020, 22, 5561.
8 (a) T. W. Campbell, W. Burney and T. L. Jacobs, J. Am. Chem. Soc.,
¨
1950, 72, 2735; (b) R. E. Ziegert and S. Brase, Synlett, 2006, 2119;
We are grateful for the financial support from the NSFC
(21871032), the Fundamental Research Funds for the Central
Universities (2018CDQYYX0041, 2020CDJ-LHZZ-007), the Natural
Science Foundation of Chongqing (cstc2020jcyj-msxmX0520),
and the Venture & Innovation Support Program for Chongqing
Overseas Returnees (cx2017013).
(c) Y. Hou, C. Y. Meyers and M. Akomeah, J. Org. Chem., 2009,
74, 6362; (d) S. Kyasa and P. H. Dussault, Org. Lett., 2014, 16, 5235;
(e) S. Kyasa, R. N. Meier, R. A. Pardini, T. K. Truttmann, K. T. Kuwata
and P. H. Dussault, J. Org. Chem., 2015, 80, 12100.
9 (a) R. Willand-Charnley, B. W. Puffer and P. H. Dussault,
J. Am. Chem. Soc., 2014, 136, 5821; (b) A. Horn and P. H. Dussault,
J. Org. Chem., 2019, 84, 14611.
10 For reviews of [5+1] reactions, see: (a) X.-F. Fu and Z.-X. Yu, in
Methods and Applications of Cycloaddition Reactions in Organic Syntheses,
ed. N. Nishiwaki, Wiley-VCH, Weinheim, 1st edn, 2014, vol. 17,
pp. 551–564; (b) Y. Gao, X.-F. Fu and Z.-X. Yu, in Transition Metal-
Catalyzed Cycloadditions of Cyclopropanes for the Synthesis of Carbo-
cycles: C–C Activation in Cyclopropanes, ed. G.-B. Dong, Springer-
Verlag, Berlin Heidelberg, 1st edn, 2014, vol. 7, 195–231.
11 (a) N. Kornblum and H. E. DeLaMare, J. Am. Chem. Soc., 1951,
73, 880; (b) S. T. Staben, X. Linghu and F. D. Toste, J. Am. Chem. Soc.,
2006, 128, 12658.
Conflicts of interest
There are no conflicts of interest to declare.
Notes and references
¨
1 (a) J. Mulzer and E. Ohler, Chem. Rev., 2003, 103, 3753; (b) T. C.
Johnson and D. Siegel, Chem. Rev., 2017, 117, 12052; (c) G. Desimoni, 12 See the ESI,† for details.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020