2794
F. Liron et al. / Tetrahedron Letters 44 (2003) 2789–2794
Thomsen, C.; Sorensen, P. O. J. Med. Chem. 1999, 42,
3447–3462.
Quayle, P.; Wang, J.; Xu, J. Tetrahedron Lett. 1998, 39,
485–488.
7. (a) Cushman, M.; Casimiro-Garcia, A.; Williamson, K.;
Rice, W. G. Bioorg. Med. Chem. Lett. 1998, 8, 195–198;
(b) Fujita, M.; Seki, T.; Inada, H.; Shimizu, K.; Takahama,
A.; Sana, T. Bioorg. Med. Chem. 2002, 12, 771–774; (c)
Takeuchi, K.; Kohn, T. J. Tetrahedron Lett. 1998, 39,
5689–5692.
8. For a review see: (a) McMurry, J. E. Chem. Rev. 1989, 89,
1513–1524; (b) Ruell, J. A.; De Clercq, E.; Pannecouque,
C.; Witvrouw, M.; Stup, T. L.; Turpin, J. A.; Buckheit, R.
W., Jr.; Cushman, M. J. Org. Chem. 1999, 64, 5858–5866;
(c) Rubin, V. N.; Ruenitz, P. C.; Boudinot, F. D.; Boyd,
J. L. Bioorg. Med. Chem. 2001, 9, 1579–1587.
9. (a) Sugihara, T.; Takebayashi, M.; Kaneko, C. Tetra-
hedron Lett. 1995, 36, 5547–5550; (b) Moreno-Manas, M.;
Pe´rez, M.; Pleixats, R. Tetrahedron Lett. 1996, 37, 7449–
7452; (c) Moreno-Manas, M.; Pleixats, R.; Roglans, A.
Synlett 1997, 1157–1158; (d) Beller, M.; Riermeier, T. H.
Eur. J. Inorg. Chem. 1998, 29–35; (e) Calo, V.; Nacci, A.;
Monopoli, A.; Lopez, L.; Cosmo, A. D. Tetrahedron 2001,
57, 6071–6077; (f) Nilsson, P.; Larhed, M.; Hallberg, A. J.
Am. Chem. Soc. 2001, 123, 8217–8225; (g) Masllorens, J.;
Moreno-Manas, M.; Pla-Quintana, A.; Pleixats, R.;
Roglans, A. Synthesis 2002, 1903–1911; (h) Battistuzzi, G.;
Cacchi, S.; Fabrizi, G. Synlett 2002, 439–442.
10. (a) Bellina, F.; Carpita, A.; De Santis, M.; Rossi, R.
Tetrahedron Lett. 1994, 35, 6913–6916; (b) Satoh, M.;
Miyaura, N.; Suzuki, A. Chem. Lett. 1986, 1329–1332; (c)
Havranek, M.; Dvorak, D. J. Org. Chem. 2002, 67,
2125–2130.
22. For a review, see: Negishi, E. I. In Metal-Catalyzed
Cross-Coupling Reactions; Diederich, F.; Stang, P. J., Eds.;
Wiley-VCH: New York, 1998; Chapter 1.
23. The isomeric purity after purification by flash chromatog-
raphy was >95% since examination of the 13C and 1H NMR
spectra of the products indicated the presence of one
isomer in each cases.
24. Although some halo-substituted styrenes have been pre-
pared, the geometrical purities were not satisfactory, see:
(a) Muthiah, C.; Kumar, K. P.; Kumaraswamy, S.;
Kumara Swamy, K. C. Tetrahedron 1998, 54, 14315–14326;
(b) Huang, Z. Z.; Lan, G. C.; Huang, X. Synth. Commun.
1998, 28, 633–637.
25. Typical procedure: To a stirred solution of vinyl stannane
1 (1 equiv.) in dry CH2Cl2 (2 mL per mmol of substrate)
was added at 0°C sublimed finely divided I2 (1.05 equiv.)
and the dark wine solution was vigorously stirred at room
temperature until all of the substrate had been consumed.
Saturated aqueous Na2S2O3 was added to remove excess
of iodine followed by potassium fluoride aqueous solution.
After stirring at room temperature for 1 h, the resulting
white precipitate of tributyltin fluoride was removed by
filtration and the filtrate was extracted with ether. The
combined organic layer was washed with brine, dried over
MgSO4 and concentrated (the crude vinyl iodide 2 could
be used in the further step without purification). Filtration
through silica gel afforded pure vinyl iodide 2.
2b: 1H NMR (200 MHz, CDCl3) d 7.47 (2H, d, J=8.9 Hz),
6.84 (2H, d, J=8.9 Hz), 6.49 (1H, t, J=7.6 Hz), 3.81 (3H,
s), 3.65 (2H, t, J=6.3 Hz), 2.27 (2H, q, J=7.6 Hz), 1.48
(1H, br.s); 13C NMR (50 MHz, CDCl3) d 159.2, 138.9,
134.0, 130.0, 113.6, 97.6, 61.5, 55.3, 35.4.
11. Minato, A.; Suzuki, K. J. Am. Chem. Soc. 1987, 109,
1257–1258.
12. Shen, W.; Wang, L. J. Org. Chem. 1999, 64, 8873–8879.
13. For a review see: (a) Cacchi, S. J. Organomet. Chem. 1999,
576, 42–64; (b) Cacchi, S.; Felici, M.; Pietroni, B. Tetra-
hedron Lett. 1984, 25, 3137–3140; (c) Wu, M. J.; Wei, L.
M.; Lin, C. F.; Leou, S. P.; Wei, L. L. Tetrahedron 2001,
57, 7839–7844; (d) Cacchi, S.; Fabrizi, G.; Goggiamani, A.;
Moreno-Manas, M.; Vallribera, A. Tetrahedron Lett. 2002,
43, 5537–5540.
14. Hay, L. A.; Koenig, T. M.; Ginah, F. O.; Copp, J. D.;
Mitchell, D. J. Org. Chem. 1998, 63, 5050–5058.
15. (a) Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Pace,
P. Tetrahedron 1996, 52, 10225–10240; (b) Cacchi, S.;
Fabrizi, G.; Moro, L.; Pace, P. Synlett 1997, 1367–1370;
(c) Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Org. Lett.
2000, 2, 2927–2930.
16. Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei,
T.; Yoshida, J. I. J. Am. Chem. Soc. 2001, 123, 11577–
11585.
17. Liron, F.; Le Garrec, P.; Alami, M. Synlett 1999, 246–248.
18. Alami, M.; Liron, F.; Gervais, M.; Peyrat, J. F.; Brion, J.
D. Angew. Chem., Int. Ed. 2002, 41, 1578–1580.
19. Cummins, C. H.; Gordon, E. J. Tetrahedron Lett. 1994, 35,
8133–8136.
1
2c: H NMR (200 MHz, CDCl3) d 7.30 to 7.17 (5H, m),
6.47 (1H, t, J=7.5 Hz), 3.57 (2H, t, J=6.4 Hz), 2.20 (2H,
q, J=7.5 Hz), 1.89 (1H, br.s); 13C NMR (50 MHz, CDCl3)
d 141.3, 139.2, 128.5, 128.1, 128.0, 97.0, 61.2, 35.2.
To a solution of vinyl iodide 2, PdCl2(PPh3)2 (5 mol%) in
THF was added at room temperature ArZnCl (2 equiv.)
prepared by transmetallation from the corresponding
Grignard reagent (2 equiv.) and anhydrous ZnCl2 (2.1
equiv.). The reaction was stirred at room temperature and
monitored by TLC until complete consumption of starting
materials (2 to 4 h). The reaction was hydrolyzed at 0°C
with aqueous HCl (1N), extracted with Et2O, the organic
extract was dried over MgSO4 and the solvent was removed
in vacuo. Pure arylated olefin was isolated by simple
filtration through silica gel.
E-3m: 1H NMR (200 MHz, CDCl3) d 7.46 to 7.35 (3H, m),
7.26 to 7.20 (4H, m), 6.86 (2H, d, J=9.0 Hz), 6.08 (1H,
t, J=7.6 Hz), 3.83 (3H, s), 3.73 (2H, t, J=6.6 Hz), 2.42
(2H, q, J=7.6 Hz), 1.94 (1H, s); 13C NMR (50 MHz,
CDCl3) d 158.7, 143.5, 140.0, 135.0, 129.7, 128.2, 128.1,
126.9, 123.4, 113.4, 62.5, 55.2, 33.2.
1
Z-3m: H NMR (200 MHz, CDCl3) d 7.18 (5H, m), 7.05
(2H, d, J=8.3 Hz), 6.84 (2H, d, J=8.3 Hz), 6.00 (1H, t,
J=7.3 Hz), 3.76 (3H, s), 3.66 (2H, t, J=6.5 Hz), 2.36 (2H,
q, J=7.0 Hz); 13C NMR (50 MHz, CDCl3) d 158.5, 143.4,
142.7, 132.1, 130.9, 127.9, 127.2, 126.9, 125.1, 113.5, 62.3,
55.0, 33.2.
20. Under Stille’s standard conditions (PdCl2(RCN)2 (R=Me,
Ph), DMF or NMP, 20°C), no coupling reaction occurred
and the starting material was recovered. Increasing the
reaction time to 24 h and temperature to 110°C resulted
in decomposition of reactant.
26. Rottla¨nder, M.; Boymond, L.; Cahiez, G.; Knochel, P. J.
Org. Chem. 1999, 64, 1080–1081.
21. The coupling of a similar stannane compound having the
alcohol group protected as MOM ether was reported, see: