1300
G. Hanquet et al. / Tetrahedron: Asymmetry 14 (2003) 1291–1301
1
the method described for 7a. Rf=0.42 (ethyl acetate/
dichloromethane, 1:1). [h]2D0=−222 (c 1, acetone). Mp=
1.02, acetone). H NMR (200 MHz; CDCl3): l=0.90
(t, 3H, J=7.3 Hz), 1.58 (sext, 2H, 7.3 Hz), 2.40 (t, 2H,
J=7.3 Hz), 2.41 (s, 3H), 2.78 (AB fragment of an ABX
system, 2H, JAX=7.3 Hz, JBX=4.9 Hz, JAB=17.5 Hz,
Dk=37.7 Hz), 2.93 (AB fragment of an ABX system,
2H, JAX=7.5 Hz, JBX=4.4 Hz, JAB=12.9 Hz, Dk=24
Hz), 3.98 (d, 1H, J=2.7 Hz), 4.50–4.55 (m, X of an
ABX system, 1H), 7.32 (B fragment of an (AB)2 system,
2H, JAB=8.22 Hz, Dk=41.5 Hz), 7.53 (A fragment of
an (AB)2 system, 2H, JAB=8.22 Hz, Dk=41.5 Hz) ppm.
13C NMR (50 MHz, CDCl3): l=13.7, 17.1, 21.5, 45.6,
48.4, 62.1, 64.8, 124.2, 130.2, 140.3, 142.0, 210.5 ppm.
Anal. calcd for C14H20O3S (268.39): C, 62.66; H, 7.51.
Found: C, 62.60; H, 7.46%.
1
80–83°C. H NMR (200 MHz; CDCl3): l=0.89 (t, 3H,
J=7.3 Hz), 1.57 (sext, 2H, 7,3 Hz), 2.39 (t, 2H, J=7.3
Hz), 2.43 (s, 3H), 2.64 (A2 system, d, 2H, J=6.2 Hz)
2.86 (AB fragment of an ABX system, 2H, JAX=9.5
Hz, JBX=2.6 Hz, JAB=13.5 Hz, Dk=55 Hz), 4.10 (s
broad, 1H), 4.57–4.69 (m, X of an ABX system, 1H),
7.35 (B fragment of an (AB)2 system, 2H, JAB=8.02
Hz, Dk=36 Hz), 7.53 (A fragment of an (AB)2 system,
2H, JAB=8.02 Hz, Dk=36 Hz) ppm. 13C NMR (50
MHz, CDCl3): l=13.7, 17.1, 21.5, 45.6, 48.5, 61.5,
63.7, 124.1, 130.2, 139.8, 141.8, 210.3 ppm. IR (film):
w=3380, 2950, 1700, 1080 cm−1 Anal. calcd for
C14H20O3S (268.39): C, 62.66; H, 7.51. Found: C, 62.75;
H, 7.67%.
4.24. (−)-(2S,SS)-1-(p-Tolylsulfinyl)-4-(1,3-dioxolane)-
heptane-2-ol, 15
4.22. (−)-(2R,SS)-1-(p-Tolylsulfinyl)-4-(1,3-dioxolane)-
An analytical sample of 15 could be obtained by crys-
tallisation in ether as a white solid. Rf=0.42 (ethyl
acetate/dichloromethane, 1:1). [h]2D0=−44 (c 0.5, ace-
tone). Mp=70–73°C. 1H NMR (200 MHz; CDCl3):
l=0.90 (t, 3H, J=7.2 Hz), 1.20–1.48 (m, 2H), 1.55–
1.67 (m, 2H), 1.91 (B fragment of an ABX system, 1H,
heptane-2-ol, 14
An analytical sample of 14 could be obtained by purifi-
cation by column chromatography on silica gel (hex-
ane/ethyl acetate 10:1) as a yellow oil. Rf=0.43 (ethyl
acetate/dichloromethane, 1:1). [h]2D0=−236 (c 1.22, ace-
1
J
BX=3.38 Hz, JAB=14.7 Hz, Dk=29 Hz), 2.04 (A
tone). H NMR (200 MHz; CDCl3): l=0.86 (t, 3H,
fragment of an ABX system, 1H, JAX=8.56 Hz, JAB
=
J=7.2 Hz), 1.20–1.42 (m, 2H), 1.49–1.61 (m, 2H), 1.81
14.7 Hz, Dk=29 Hz), 2.41 (s, 3H), 2.85 (B fragment of
an ABX system, 1H, JBX=4.46 Hz, JAB=13.1 Hz,
Dk=44.3 Hz), 3.05 (A fragment of an ABX system, 1H,
(AB fragment of a degenerated ABX system, 2H, JAX
=
1.94 Hz), 2.38 (s, 3H), 2.81 (m, 2H), 3.90 (s, 4H), 4.09
(s broad, 1H), 4.39–4.51 (m, 1H), 7.30 (B fragment of
an (AB)2 system, 2H, JAB=8.14 Hz, Dk=42.5 Hz), 7.51
(A fragment of an (AB)2 system, 2H, JAB=8.14 Hz,
Dk=42.5 Hz) ppm. 13C NMR (50 MHz, CDCl3): l=
14.3, 17.1, 21.5, 39.6, 42.6, 63.1, 64.5, 64.7, 64.9, 111.4,
124.0, 130.0, 140.9, 141.4 ppm. IR (film): w=3520–
3480, 2980–2800 cm−1. Anal. calcd for C16H24O4S
(312.42): C, 61.51; H, 7.74. Found: C, 61.64; H, 7.83%.
J
AX=7.08 Hz, JAB=13.1 Hz, Dk=44.3 Hz), 3.95 (s,
4H), 4.02 (s broad, 1H), 4.19–4.31 (X fragment of a
ABX system, m, 1H), 7.33 (B fragment of an (AB)2
system, 2H, JAB=8.14 Hz, Dk=42.5 Hz), 7.57 (A frag-
ment of an (AB)2 system, 2H, JAB=8.14 Hz, Dk=42.5
Hz) ppm. 13C NMR (50 MHz, CDCl3): l=14.3, 17.2,
21.5, 39.6, 42.3, 64.1, 64.2, 64.7, 64.9, 111.6, 124.3,
130.1, 140.8, 141.7 ppm. IR (film): w=3520–3480, 2980–
2800 cm−1. Anal. calcd for C16H24O4S (312.42): C,
61.51; H, 7.74. Found: C, 61.39; H, 7.74%.
4.23. (−)-(2S,SS)-1-(p-Tolylsulfinyl)-4-heptanone-2-ol,
16
To anhydrous ZnI2 (173 mg, 0.54 mmol; 1.1 equiv.), a
solution of ketosulfoxide 13 (153 mg, 0.49 mmol; 1
equiv.) was added. After stirring for 30 min at rt, the
solution was cooled to −78°C and (0.82 ml, 1.23 mmol;
2.5 equiv.) of a 1.5 M solution of DIBAL-H in toluene
was added dropwise and stirred for 1 h. The reaction
mixture was quenched with 10 ml of MeOH. The
solvent was then evaporated and a saturated disodium
References
1. Mioskowsky, C.; Solladie´, G. J. Chem. Soc., Chem. Com-
mun. 1977, 162–165.
2. (a) Solladie´, G. Synthesis 1981, 195–200; (b) Solladie´, G.
In Comprehensive Organic Synthesis; Trost, B.; Fleming,
I., Eds.; Pergamon Press, 1991; Vol. 6, pp. 133–170; (c)
Carreno, C. Chem. Rev. 1995, 95, 1717–1760; (d) Sol-
ladie´, G. Enantiomer 1999, 4, 183–193 and references
cited therein.
3. Solladie´, G.; Greck, C.; Demailly, G. J. Org. Chem. 1985,
50, 1552–1560.
4. Solladie´-Cavallo, A.; Suffert, J.; Adib, A.; Solladie´, G.
Tetrahedron Lett. 1990, 31, 6649–6652.
5. (a) Solladie´, G.; Ghiatou, N. Tetrahedron: Asymmetry
1992, 3, 33–36; (b) Solladie´, G.; Ghiatou, N. Tetrahedron
Lett. 1992, 33, 1605–1608.
6. (a) Solladie´, G.; Dom´ınguez, C. J. Org. Chem. 1994, 59,
3898–3901; (b) Solladie´, G.; Bauder, C.; Rossi, L. J. Org.
Chem. 1995, 60, 7774–7777; (c) Solladie´, G.; Colobert, F.;
Denni, D. Tetrahedron: Asymmetry 1998, 9, 3081–3094.
L
-tartrate dihydrate solution (30 ml) and 30 ml of ethyl
acetate were added. The stirring was continued until a
clear phase-separation occurred. The aqueous layer was
extracted with ethyl acetate and the combined organic
layers were dried (MgSO4) and evaporated. The yellow
oil obtained (15) was suspended in a mixture of THF
(20 ml) and water (15 ml) and oxalic acid (45 mg; 0.5
mmol; 0.1 equiv.) was added. The mixture was refluxed
for 2 h and treated with a saturated solution of
NaHCO3. The aqueous phase was extracted with ethyl
acetate and the combined organic layers were washed
with brine, dried (MgSO4) and concentrated. The crude
product was washed with ether to afford 16b. Rf=0.22
(ethyl acetate/dichloromethane, 1:1). [h]2D0=−184 (c