2 (a) G. Studbauer, P. Giuffre and P. Sarti, J. Biol. Chem., 1999, 274,
28128; (b) S. Moncada, R. M. J. Palmer and E. A. Higgs, Pharmacol.
Rev., 1991, 43, 109; (c) A. R. Butler and D. L. Williams, Chem. Soc.
Rev., 1993, 22, 233.
3 (a) M. Feelisch and J. S. Stamler, in Methods in Nitric Oxide Research,
John Wiley and Sons, Chichester, England, 1996; (b) L. Jia,
C. Bonaventura, J. Bonaventura and J. S. Stamler, Nature, 1996, 380,
221; (c) M. T. Galdwin, J. R. Lancaster Jr., B. A. Freeman and A.
N. Schechter, Nat. Med., 2003, 9, 496.
4 (a) R. W. Ye, I. Toro-Suarez, J. M. Tiedje and B. A. Averill, J. Biol.
Chem., 1991, 266, 12848; (b) C. L. Hulse, B. A. Averill and J. M. Tiedje,
J. Am. Chem. Soc., 1989, 111, 2322; (c) M. A. Jackson, J. M. Tiedje and
B. A. Averill, FEBS Lett., 1991, 291, 41.
5 (a) J. W. Godden, S. Turley, D. C. Teller, E. T. Adman, Liu, M. Y. Liu,
W. J. Payne and J. LeGall, Science, 1991, 153, 438; (b) E. T. Adman and
S. Turley, in Bioinorganic Chemistry of Copper, ed. K. D. Karlin, and
will take place. This, indeed, has been suggested earlier by
Wayland and others.43 In the present cases also, the formation of
the thermally unstable [CuII–NO] was observed spectroscopi-
cally prior to the reduction.
It is interesting to note that though in cases of [Cu(tiaea)
(CH3CN)]2+ and [Cu(teaea)(CH3CN)]2+, exclusively tri-nitrosa-
tion of the ligand was observed; in the present study, both the
mono- and di-nitrosation of the ligand were found (Scheme 1)
with almost 65% of un-reacted ligand in each cases. All the
nitrosation products were isolated and characterized completely
(experimental section). It should be noted that the free ligands
do not react with nitric oxide in the experimental condition to
afford the N-nitrosation products.
Z. Tyekllr, Chapman
& Hall, Inc., New York, 1993, pp 397;
The formation of di-nitrosation product in case of complex 1
was further confirmed by its X-ray single crystal structure deter-
(c) S. J. Ferguson, Curr. Opin. Chem. Biol., 1998, 2, 182.
6 (a) D. J. Richardson and N. J. Watmough, Curr. Opin. Chem. Biol., 1999,
3, 207; (b) I. Moura and J. J. G. Moura, Curr. Opin. Chem. Biol., 2001,
5, 168; (c) E. I. Tocheva, F. I. Rosell, A. G. Mauk and M. E. P. Murphy,
Biochemistry, 2007, 46, 12366; (d) J. Torres, C. E. Cooper and
M. Wilson, J. Biol. Chem., 1998, 273, 8756; (e) X. Zhou, M. G. Espey, J.
X. Chen, L. J. Hofseth, K. M. Miranda, S. P. Hussain, D. A. Winks and
C. C. Harris, J. Biol. Chem., 2000, 275, 21241.
7 (a) J. Torres, D. Svistunenko, B. Karlsson, C. E. Cooper and M.
T. Wilson, J. Am. Chem. Soc., 2002, 124, 963; (b) J. Torres, C. E. Cooper
and M. T. Wilson, J. Biol. Chem., 1998, 273, 8756; (c) D. Tran,
B. W. Skelton, A. H. White, L. E. Laverman and P. C. Ford, Inorg.
Chem., 1998, 37, 2505; (d) C. T. Martin, R. H. Morse, R. M. Kanne, H.
B. Gray, B. G. Malmstrom and S. I. Chan, Biochemistry, 1981, 20, 5147.
8 (a) J. S. Stamler, D. J. Singel and J. Loscalzo, Science, 1992, 258, 1898;
(b) R. J. P. Williams, Chem. Soc. Rev., 1996, 25, 77; (c) J.-C. Drapier and
C. Bouton, BioEssays, 1996, 18, 549.
//
mination. The ORTEP diagram of L1 is shown in Fig. 6. It has
crystallographically imposed twofold symmetry.
It is interesting to note that the yield of mono and di-nitrosa-
tion products obtained in cases of complexes 1, 2 and 3 are in
the order of 1 > 2 ≈ 3 and 3 > 2 > 1, respectively. Hence, it is
evident that the yield of di-nitrosation product increases on
moving from methyl, ethyl to isobutyl group on N-substitution
of the ligand. Perhaps, the better electron donor ability of the
group at N-substitution, facilitates more than one nitrosation at
the secondary amine centers of the ligand. The formation of the
[CuII–NO] intermediate prior to the reduction of copper(II) to
copper(I) might also have some role to control the degree of
nitrosation.
9 (a) J. S. Stamler, Cell, 1994, 78, 931; (b) M. S. Feelisch, T. Rassaf,
S. Mnaimneh, N. Singh, N. S. Byran, D. Jourd’Heuil and M. Kelm,
FASEB J., 2002, 16, 1775.
10 (a) N. S. Bryan, T. Rassaf, R. E. Maloney, C. M. Rodriguez, F. Saijo, J.
R. Rodriguez and M. Feelisch, Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
4308; (b) B. P. Luchsinger, E. N. Rich, A. J. Gow, E. M. Williams,
J. S. Stamler and D. J. Singel, Proc. Natl. Acad. Sci. U. S. A., 2003, 100,
461.
11 (a) C. T. Martin, R. H. Morse, R. M. Kanne, H. B. Gray,
B. G. Malmstrom and S. I. Chan, Biochemistry, 1981, 20, 5147;
(b) A. C. F. Gorren, E. de Boer and R. Wever, Biochem. Biophys. Acta,
1987, 916, 38; (c) C. E. Cooper, J. Torres, M. A. Sharpe and
M. T. Wilson, FEBS Lett., 1997, 414, 281.
Conclusion
The nitric oxide reactivity of three copper(II) complexes of
bidentate amine ligands were studied in acetonitrile solvent. All
the complexes afforded thermally unstable [CuII–NO] intermedi-
ate on reaction with nitric oxide in acetonitrile solution followed
by the reduction of copper(II) centers to copper(I). The reduction
was resulted with a simultaneous mono- and di-nitrosation at the
secondary amine sites of the ligand. Similar N-nitrosation was
12 (a) J. Torres, C. E. Cooper and M. T. Wilson, J. Biol. Chem., 1998, 273,
8756; (b) J. Torres, D. Svistunenko, B. Karlsson, C. E. Cooper and M.
T. Wilson, J. Am. Chem. Soc., 2002, 124, 963.
observed
with
[Cu(tiaea)(CH3CN)]2+
and
[Cu(teaea)
(CH3CN)]2+; however, in these cases exclusive tri-nitrosation
was observed. On the other hand, in the cases of [CuII(DAC)]2+,
Cu(Ds-AMP)2 and Cu(Ds-en)2, where the reduction took place
through intermediate amide formation in presence of base, exclu-
sive mono-nitrosation was found. The ratio of the yield of mono-
and di-nitrosation product, in the present case, is found to be
dependent on the N-substitution present in the ligand
framework.
13 (a) D. Tran and P. C. Ford, Inorg. Chem., 1996, 35, 2411; (b) M. D. Lim,
K. B. Capps, T. B. Karpishin and P. C. Ford, Nitric Oxide, 2005, 12, 244.
14 (a) G. C. Brown, Biochim. Biophys. Acta, Bioenerg., 2001, 1504, 46;
(b) J. Torres, M. A. Sharpe, A. Rosquist, C. E. Cooper and M. T. Wilson,
FEBS Lett., 2000, 475, 263; (c) H. J. Wijma, G. W. Canters, S. de Vries
and M. P. Verbeet, Biochemistry, 2004, 43, 10467.
15 (a) K. Tsuge, F. DeRosa, M. D. Lim and P. C. Ford, J. Am. Chem. Soc.,
2004, 126, 6564; (b) C. Khin, M. D. Lim, K. Tsuge, A. Iretskii, G. Wu
and P. C. Ford, Inorg. Chem., 2007, 46, 9323.
16 (a) M. Sarma, A. Kalita, P. Kumar, A. Singh and B. Mondal, J. Am.
Chem. Soc., 2010, 132, 7846; (b) M. Sarma, A. Singh, S. G. Gupta,
G. Das and B. Mondal, Inorg. Chim. Acta, 2010, 363, 11868;
(c) A. Kalita, P. Kumar, R. C. Deka and B. Mondal, B. Inorg. Chem.,
2011, 50, 11868.
Acknowledgements
17 SMART, SAINT and XPREP, Siemens Analytical X-Ray Instruments Inc.,
Madison, Wisconsin, USA, 1995
18 G. M. Sheldrick, SADABS: software for Empirical Absorption
Correction, University of Gottingen, Institut fur Anorganische
Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany,
1999–2003
The authors sincerely thank the Department of Science and
Technology, India for financial support; DST-FIST for X-ray dif-
fraction facility. MS would like to thank UGC, India for provid-
ing the scholarship.
19 G. M. Sheldrick, SHELXS-97, University of Gottingen, Germany, 1997
20 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
21 W. Kurosawa, T. Kan and T. Fukuyama, Org. Syn., 2002, 79, 186.
22 (a) R. Nasamen, I. Virtano and H. Mvllvmaki, Suom. Kemistil., 1966,
B39, 200; (b) M. M. Andino, J. D. Curet, M. M. Muir and R. C. Ryan,
References
1 G. B. Richter-Addo and P. Legzdins, in Metal Nitrosyls, Oxford Univer-
sity Press, New York, 1992.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 2927–2934 | 2933