D.K. Seth, S. Bhattacharya / Polyhedron 30 (2011) 2438–2443
2443
[4] T.S. Lobana, R. Sharma, R. Sharma, S. Mehra, A. Castineiras, P. Turner, Inorg.
Chem. 44 (2005) 1914.
[5] T.S. Lobana, R. Sharma, E. Bermejo, A. Castineiras, Inorg. Chem. 42 (2003) 7728.
[6] Y. Zhang, T. Wu, R. Liu, T. Dou, X. Bu, P. Feng, Cryst. Growth Des. 10 (2010)
2047.
found to have significant influence on the yield of the biphenyl
product (entries 1–3 and entries 4–6). The observed catalytic effi-
ciency of these copper(I) complexes, though not remarkably high,
are found to be comparable to those found in the literature for sim-
ilar copper(I)-catalyzed Suzuki coupling reactions [26,27].
[7] A. Lavie-Cambot, M. Cantuel, Y. Leydet, G. Jonusauskas, D.M. Bassani, N.D.
McClenaghan, Coord. Chem. Rev. 23 (2008) 2572.
[8] P.C. Ford, E. Cariati, James Bourassa, Chem. Rev. 99 (1999) 3625.
[9] I.P. Beletskaya, A.V. Cheprakov, Coord. Chem. Rev. 21 (2004) 2337.
[10] S. Goswami, W. Kharmawphlang, A.K. Deb, S.-M. Peng, Polyhedron 15 (1996)
3635.
4. Conclusions
The present study shows that coordination by N-(aryl)pyridine-
2-aldimines (L–R) can stabilize copper in the +1 oxidation state.
This study also demonstrates that the copper(I) complexes of
N-(aryl)pyridine-2-aldimines can efficiently catalyze Suzuki type
C–C cross-coupling reactions.
[11] M.J. Frisch, G.W. Tracks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalamani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, I. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskroz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision D01, Gaussian Inc., Pittsburgh, PA, 2003.
[12] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Fortran Programs for Crystal Structure
Solution and Refinement, University of Gottingen, Gottingen, Germany, 1997.
[13] P. Evans, P. Hogg, R. Grigg, M. Nurnabi, J. Hinsley, V. Sridharan, S. Suganthan, S.
Korn, S. Collard, J.E. Muir, Tetrahedron 61 (2005) 9696.
[14] C.L. Chen, Y.H. Liu, S.H. Peng, S.T. Liu, Organometallics 24 (2005) 1075.
[15] E. Peris, J. Mata, J.A. Loch, R.H. Crabtree, Chem. Commun. (2001) 201.
[16] D.A. Albisson, R.B. Bedford, S.P. Noelle, S.E. Lawrence, Chem. Commun. 19
(1998) 2095.
[17] J.-H. Yu, Z.-L. Lü, J.-Q. Xu, H.-Y. Bie, J. Lu, X. Zhang, New J. Chem. 28 (2004) 940.
[18] H. Oshio, T. Watanabe, A. Ohto, T. Ito, H. Masuda, Inorg. Chem. 35 (1996) 472.
[19] R. Starosta, M. Florek, J. Król, M. Puchalska, A. Kochel, New J. Chem. 34 (2010)
1441.
[20] L. Baiyan, Y. Peng, L. Guanghua, J. Hua, Y. Yang, D. Jin, Z. Shi, S. Feng, Cryst.
Growth Des. 10 (2010) 2192.
[21] E.R. Strieter, B. Bhayana, S.L. Buchwald, J. Am. Chem. Soc. 131 (2009) 78.
[22] C.M. Fitchett, F.R. Keene, C. Richardson, P.J. Steel, Polyhedron 27 (2008) 1527.
[23] F.R. Knight, A.L. Fuller, A.M.Z. Slawin, J.D. Woollins, J. Chem. Soc., Dalton Trans.
(2009) 8476.
[24] G.A. Crosby, W.H. Elfring, J. Phys. Chem. 80 (1976) 2206.
[25] M.J. Cook, A.P. Lewis, S.J. Thomson, J.L. Glasper, D.J. Robbins, J. Chem. Soc.,
Perkin Trans. 2 (1984) 1293.
[26] J.-H. Li, J.-L. Li, D.-P. Wang, S.-F. Pi, Y.-X. Xie, M.-B. Zhang, X.-C. Hu, J. Org. Chem.
72 (2007) 2053.
Acknowledgments
The authors thank the reviewers for their constructive com-
ments, which have been helpful in preparing the revised manu-
script. Financial assistance received from the Department of
Science and Technology, New Delhi, India [Grant No. SR/S1/IC-29/
2009] is gratefully acknowledged. Dipravath Kumar Seth thanks
the Council of Scientific and Industrial Research, New Delhi, India,
for his fellowship [Grant No. 9/096(0511)/2006-EMR-I].
Appendix A. Supplementary data
CCDC 817828 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be found, in
References
[1] B. Breit, Y. Schmidt, Chem. Rev. 108 (2008) 2928.
[2] M. Mar Díaz-Requejo, P.J. Pérez, Chem. Rev. 108 (2008) 3379.
[3] B.-C. Tzeng, T.-Yi. Chang, Cryst. Growth Des. 9 (2009) 5343.
[27] M.B. Thathagar, J. Beckers, Gadi Rothenberg, J. Am. Chem. Soc. 124 (2002)
11858.