9042
K. Sasaki et al. / Tetrahedron Letters 47 (2006) 9039–9043
11. The 2,3-dideoxy glycosyl donor 2 was synthesized by
hydrogenation of 1 using Rh/Al2O3 in EtOAc–PhMe;
Sasaki, K.; Wakamatsu, T.; Matsumura, S.; Toshima, K.
Tetrahedron Lett. 2006, 47, 8271–8274.
armed glycosyl donors. Furthermore, they were found
to be very effective in the synthesis of O-glycosidic link-
ages between highly deoxygenated sugars and tertiary
alcohols.
12. The configurations at the anomeric positions of the 2,3-
1
unsaturated glycosides were determined by the H NMR
analyses of the corresponding 2,3-saturated glycosides
which were obtained by standard hydrogenations. Rep-
resentative 1H NMR (300 MHz, CDCl3): spectra [d
(TMS), J (Hz)] are the following. Compound 4a: 8.02–
7.95 (4H, m, ArH), 7.66–7.52 (2H, m, ArH), 7.52–7.22
Acknowledgements
This research was supported in part by Grant-in-Aid for
the 21st Century COE Program ‘KEIO Life Conjugated
Chemistry’, for Scientific Research on Priority Areas
0
0
(19H, m, ArH), 6.02 (1H, ddd, J2 ,3 = 10.2,
J1 ,3 = J3 ,4 = 0.9, H-30), 5.91 (1H, ddd, J2 ,3 = 10.2,
0
0
0
0
0
0
18032068 and for JSPS Fellows 18 6013 from the Min-
*
J1 ,2 = 2.4, J2 ,4 = 2.1, H-200), 5.68 (1H, ddd, J4 ,5 = 7.2,
0
0
0
0
0
0
istry of Education, Culture, Sports, Science, and Tech-
nology, Japan.
0
0
0
0
0
0
J2 ,4 = 2.1, J3 ,4 = 0.9, H-4 ), 5.16 (1H, dd, J1 ,2 = 2.4,
J1 ,3 = 0.9, H-10), 4.99 and 4.80 (2H, ABq, J = 10.8,
ArCH2), 4.91 and 4.64 (2H, ABq, J = 11.4, ArCH2), 4.78
and 4.67 (2H, ABq, J = 12.0, ArCH2), 4.61 (1H, d,
0
0
0
0
0
0
J1,2 = 3.6, H-1), 4.46 (1H, dd, J6 ,6 = 8.7, J5 ,6 = 4.5,
References and notes
H-60), 4.37 (1H, ddd, J4 ,5 = 7.2, J5 ,6 = 5.1, J5 ,6 = 4.5,
0
0
0
0
0
0
H-50), 4.34 (1H, dd, J6 ,6 = 8.7, J5 ,6 = 5.1, H-60), 4.01
(1H, dd, J6,6 = 11.4, J5,6 = 4.8, H-6), 4.00 (1H, dd,
J2,3 = J3,4 = 9.3, H-3), 3.82–3.72 (2H, m, H-5, 6), 3.53
(1H, dd, J3,4 = J4,5 = 9.3, H-4), 3.49 (1H, dd, J2,3 = 9.3,
J1,2 = 3.6, H-2), 3.38 (3H, s, OMe). Compound 4b: 8.04–
7.96 (4H, m, ArH), 7.61–7.46 (2H, m, ArH), 7.46–7.22
0
0
0
0
1. Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957–981.
2. (a) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25,
212–235; (b) Sinay, P. Pure Appl. Chem. 1991, 63, 519–
¨
528; (c) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93,
1503–1531; (d) Boons, G.-J. Tetrahedron 1996, 52, 1095–
1121; (e) Davis, D. G. J. Chem. Soc., Perkin Trans. 1 2000,
0
0
0
0
(19H, m, ArH), 6.10 (1H, ddd, J2 ,3 = 10.2, J3 ,4 = 3.6,
2137–2160; (f) Fugedi, P. In The Organic Chemistry of
¨
J1 ,3 = 1.5, H-30), 5.92 (1H, ddd, J2 ,3 = 10.2,
0
0
0
0
Sugars; Levy, D. E., Fugedi, P., Eds.; CRC Press: Boca
¨
J1 ,2 = J2 ,4 = 1.5, H-20), 5.55 (1H, ddd, J4 ,5 = 11.4,
0
0
0
0
0
0
Raton, 2006; pp 89–179.
0
0
0
0
J3 ,4 = 3.6,
J1 ,3 = 1.5,
H-40),
5.16
(1H,
dd,
3. Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-
Reid, B. J. Am. Chem. Soc. 1988, 110, 5583–5584.
4. (a) Matsumoto, N.; Tsuchida, T.; Maruyama, M.; Sawa,
R.; Kinoshita, N.; Homma, Y.; Takahashi, Y.; Iinuma,
H.; Naganawa, H. J. Antibiot. 1996, 49, 953–954;
(b) Matsumoto, N.; Tsuchida, T.; Maruyama, M.;
Kinoshita, N.; Homma, Y.; Iinuma, H.; Sawa, T.;
Hamada, T.; Takeuchi, T.; Heida, N.; Yoshioka, T. J.
Antibiot. 1999, 52, 269–275; (c) Matsumoto, N.; Tsuchida,
T.; Nakamura, H.; Sawa, R.; Takahashi, Y.; Naganawa,
H.; Iinuma, H.; Sawa, T.; Takeuchi, T.; Shiro, M. J.
Antibiot. 1999, 52, 276–280.
5. (a) Omura, S.; Tanaka, H.; Oiwa, R.; Awaya, J.; Masuma,
R.; Tanaka, K. J. Antibiot. 1977, 30, 908–916;
(b) Imamura, N.; Kakinuma, N.; Ikekawa, H.; Tanaka,
H.; Omura, S. J. Antibiot. 1981, 34, 1517–1518.
6. Sobti, A.; Kim, K.; Sulikowski, G. A. J. Org. Chem. 1996,
61, 6–7.
7. (a) Jencks, W. P. In Catalysis in Chemistry and Enzymo-
logy; Dover: New York, 1987; pp 302–305; (b) Strynadka,
N. C. J.; James, M. N. G. J. Mol. Biol. 1991, 220, 401–424.
8. (a) Ford, L. O.; Johnson, L. N.; Machin, P. A.; Phillips,
D. C.; Tjian, R. J. Mol. Biol. 1974, 88, 349–371;
(b) Chipman, D. M.; Sharon, N. Science 1969, 167, 454–
469; (c) Chipman, D. M. Biochemistry 1971, 10, 1715–
1722; (d) Rupley, J. A. Proc. Roy. Soc. Ser. B 1967, 167,
416–428; (e) Imoto, I.; Johnson, L. N.; North, A. C. T.;
Phillips, D. C.; Rupley, J. A. In The Enzymes; 3rd ed.;
Boyer, P., Ed.; Academic Press: New York, 1972; Vol. 7,
pp 665–868.
9. (a) Dahlquist, F. W.; Rand-Meir, T.; Raftery, M. A.
Biochemistry 1969, 8, 4214–4221; (b) Smith, L. E. H.;
Mohr, L. H.; Raftery, M. A. J. Am. Chem. Soc. 1973, 95,
7497–7501; (c) Rosenberg, S.; Kirsh, J. F. Biochemistry
1981, 20, 3196–3204.
J1 ,2 = J1 ,3 = 1.5, H-10), 4.98 and 4.80 (2H, ABq,
J = 11.1, ArCH2), 4.87 and 4.61 (2H, ABq, J = 11.1,
ArCH2), 4.78 and 4.66 (2H, ABq, J = 12.0, ArCH2), 4.59
0
0
0
0
0
0
(1H, d, J1,2 = 3.6, H-1), 4.54 (1H, dd, J6 ,6 = 11.7,
J5 ,6 = 6.0, H-60), 4.49 (1H, dd, J6 ,6 = 11.7, J5 ,6 = 5.4,
0
0
0
0
0
0
H-60), 4.31 (1H, ddd, J4 ,5 = 11.4, J5 ,6 = 6.0, J5 ,6 = 5.4,
H-60), 4.08–4.01 (1H, m, H-6), 3.97 (1H, dd,
J2,3 = J3,4 = 9.3, H-3), 3.79–3.71 (2H, m, H-5, 6), 3.57
(1H, dd, J3,4 = J4,5 = 9.3, H-4), 3.53 (1H, dd, J2,3 = 9.3,
J1,2 = 3.6, H-2), 3.30 (3H, s, OMe). Compound 5a: 8.02–
7.95 (2H, m, ArH), 7.93–7.88 (2H, m, ArH), 7.58–7.48
(2H, m, ArH), 7.42–7.22 (19H, m, ArH), 5.11–5.01 (1H,
m, H-40), 5.00 and 4.80 (2H, ABq, J = 10.8, ArCH2), 4.98
and 4.68 (2H, ABq, J = 10.8, ArCH2), 4.73 (1H, br dd, H-
10), 4.78 and 4.68 (2H, ABq, J = 12.0, ArCH2), 4.63 (1H,
0
0
0
0
0
0
0
0
0
0
d, J1,2 = 3.6, H-1), 4.46 (1H, dd, J6 ,6 = 9.9, J5 ,6 = 2.1,
H-60), 4.26 (1H, dd, J6 ,6 = 9.9, J5 ,6 = 6.0, H-60), 4.22
0
0
0
0
(1H, ddd, J4 ,5 = 9.3, J5 ,6 = 6.0, J5 ,6 = 2.1, H-50), 4.01
(1H, dd, J2,3 = J3,4 = 9.3, H-3), 3.96 (1H, dd, J6,6 = 11.1,
J5,6 = 4.8, H-6), 3.81 (1H, ddd, J4,5 = 10.2, J5,6 = 4.8,
J5,6 = 1.2, H-5), 3.68 (1H, dd, J6,6 = 11.1, J5,6 = 1.2, H-6),
3.53 (1H, dd, J4,5 = 10.2, J3,4 = 9.3, H-4), 3.48 (1H, dd,
J2,3 = 9.3, J1,2 = 3.6, H-2), 3.40 (3H, s, OMe), 2.21–2.11
(1H, m, H-30), 2.05–1.80 (3H, m, H-20 · 2, H-30). Com-
pound 5b: 8.02–7.95 (4H, m, ArH), 7.61–7.47 (2H, m,
ArH), 7.44–7.22 (19H, m, ArH), 5.02 (1H, ddd,
0
0
0
0
0
0
J3 ,4 = 9.3, J4 ,5 = 9.0, J3 ,4 = 5.1, H-40), 4.98 and 4.80
(2H, ABq, J = 10.5, ArCH2), 4.88 and 4.59 (2H, ABq,
J = 11.1, ArCH2), 4.78 and 4.65 (2H, ABq, J = 12.3,
ArCH2), 4.60 (1H, d, J1,2 = 3.6, H-1), 4.56 (1H, dd,
0
0
0
0
0
0
J6 ,6 = 12.0, J5 ,6 = 3.9, H-60), 4.43 (1H, br dd,
0
0
0
0
J1 ,2 = 9.0, H-10), 4.40 (1H, dd, J6 ,6 = 12.0, J5 ,6 = 6.0,
0
0
0
0
0
0
H-60), 4.09 (1H, br dd, J6,6 = 10.5, H-6), 3.98 (1H, dd,
0
0
J2,3 = J3,4 = 9.6, H-3), 3.93 (1H, ddd, J4 ,5 = 9.0,
J5 ,6 = 6.0, J5 ,6 = 3.9, H-50), 3.75 (1H, br ddd,
J4,5 = 9.6, J5,6 = 3.9, H-5), 3.64 (1H, dd, J6,6 = 10.5,
J5,6 = 3.9, H-6), 3.56 (1H, dd, J3,4 = J4,5 = 9.6, H-4),
3.54 (1H, dd, J2,3 = 9.6, J1,2 = 3.6, H-2), 3.33 (3H, s,
OMe), 2.40–2.30 (1H, m), 1.92–1.57 (3H, m).
0
0
0
0
10. The 2,3-unsaturated glycosyl donor 1 was prepared from
the known methyl a-D-erythro-hex-2-enopyranoside in
two steps including benzoylation followed by acetolysis
(Ac2O, H2SO4, ꢀ40 ꢁC): Fraser-Reid, B.; Boctor, B. Can.
J. Chem. 1969, 47, 393–401.