G
S. Wangngae et al.
Letter
Synlett
H.; Himmel, H.-J. Eur. J. Inorg. Chem. 2011, 1302. (i) Reinmuth,
M.; Neuhaeuser, C.; Walter, P.; Enders, M.; Kaifer, E.; Himmel,
H.-J. Eur. J. Inorg. Chem. 2011, 83.
N-(Dimorpholinomethylene)-4-nitroaniline (3e, Table
Entry 5)
2
Yellow solid (0.0761 g, 85%); mp 158–159 °C; Rf = 0.38 (EtOAc).
FTIR (neat): νmax = 2965, 2854, 1547, 1321, 1265, 1111 cm–1. 1H
NMR (400 MHz, CDCl3): δ = 8.10 (d, J = 8.0 Hz, 2 H), 6.76 (d, J =
8.0 Hz, 2 H), 3.66 (s, 8 H), 3.16 (s, 8 H). 13C NMR (100 MHz,
CDCl3): δ = 157.0, 150.9, 141.4, 125.3, 121.4, 66.3, 49.2.
(3) (a) Katritzky, A. R.; Rogovoy, B. V. ARKIVOC 2005, 49. (b) Kumar,
S.; Singh, U.; Singh, L. Orient. J. Chem. 2007, 23, 541. (c) Alonso-
Moreno, C.; Antinolo, A.; Carrillo-Hermosilla, F.; Otero, A. Chem.
Soc. Rev. 2014, 43, 3406.
(4) (a) Appel, R.; Kleinstueck, R.; Ziehn, K. D. Chem. Ber. 1971, 104,
1335. (b) Lukyanenko, N. G.; Kirichenko, T. I.; Limich, V. V. Syn-
thesis 1986, 928. (c) Taschner M. J.; Triphenylphosphine–Carbon
Tetrachloride, In e-EROS Encyclopedia of Reagents for Organic
Synthesis [Online]; Wiley & Sons, Posted April 15, 2001.
(5) (a) Han, M.; Hahn, H.-G. Bull. Korean Chem. Soc. 2012, 33, 1371.
(b) Aburano, D.; Yoshida, T.; Miyakoshi, N.; Mukai, C. J. Org.
Chem. 2007, 72, 6878. (c) Bayram, M.; Blaeser, D.; Woelper, C.;
Schulz, S. Organometallics 2014, 33, 2080. (d) Yu, R. T.; Rovis, T.
J. Am. Chem. Soc. 2008, 130, 3262.
(6) Mitsunobu, O.; Kato, K.; Tomari, M. Tetrahedron 1970, 26, 5731.
(7) (a) Palomo, C.; Mestres, R. Synthesis 1981, 373. (b) Palomo, C.;
Mestres, R. Bull. Soc. Chim. Fr. 1981, 361. (c) Lee, J. Y.; Park, S. J.;
Park, S. J.; Lee, M. J.; Rhim, H.; Seo, S. H.; Kim, K.-S. Bioorg. Med.
Chem. Lett. 2006, 16, 5014. (d) Lee, Y. S.; Lee, B. H.; Park, S. J.;
Kang, S. B.; Rhim, H.; Park, J.-Y.; Lee, J.-H.; Jeong, S.-W.; Lee, J. Y.
Bioorg. Med. Chem. Lett. 2004, 14, 3379. (e) Kennemur, J. G.;
Clark, J. B.; Tian, G.; Novak, B. M. Macromolecules 2010, 43, 1867.
(f) Heo, J. H.; Seo, H. N.; Choe, Y. J.; Kim, S.; Oh, C. R.; Kim, Y. D.;
Rhim, H.; Choo, D. J.; Kim, J.; Lee, J. Y. Bioorg. Med. Chem. Lett.
2008, 18, 3899.
(8) (a) Sakai, S.; Fujinami, T.; Aizawa, T. Bull. Chem. Soc. Jpn. 1975,
48, 2981. (b) Kim, J. N.; Jung, K. S.; Lee, H. J.; Son, J. S. Tetrahe-
dron Lett. 1997, 38, 1597. (c) Li, Z.; Qian, X.; Liu, Z.; Li, Z.; Song,
G. Org. Prep. Proced. Int. 2000, 32, 571. (d) Wong, R.; Dolman, S.
J. J. Org. Chem. 2007, 72, 3969. (e) Kaboudin, B.; Jafari, E. Synthe-
sis 2008, 2683. (f) Munch, H.; Hansen, J. S.; Pittelkow, M.;
Christensen, J. B.; Boas, U. Tetrahedron Lett. 2008, 49, 3117.
(g) Sun, N.; Li, B.; Shao, J.; Mo, W.; Hu, B.; Shen, Z.; Hu, X. Beil-
stein J. Org. Chem. 2012, 8, 61. (h) Zhang, Z.; Wu, H.-H.; Tan, Y.-J.
RSC Adv. 2013, 3, 16940.
1,3-Dibenzyl-2-[4-(trifluoromethyl)phenyl]guanidine
Table 2, Entry 7)
(3g,
Colorless oil (0.0859 g, 80%). Rf = 0.36 (30% EtOAc–hexane). FTIR
(neat): νmax = 3426, 3289, 3031, 2922, 2871, 1632, 1596, 1323,
1
1164 cm–1. H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 8.4 Hz, 2
H), 7.35–7.26 (m, 6 H), 7.24–7.22 (m, 4 H), 7.01 (d, J = 8.4 Hz, 2
H), 4.36 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 153.3, 151.1,
138.4, 128.8, 128.6, 127.6, 127.2, 126.6 (q, J = 14.8 Hz), 123.5,
46.0.
1-Benzyl-3-cyclohexyl-2-(4-nitrophenyl)guanidine
Table 3, Entry 1)
Yellow solid (0.0828 g, 84%); mp 109–110 °C. Rf = 0.33 (30%
EtOAc–hexane). FTIR (neat): νmax = 3393, 3275, 2931, 2854,
1617, 1572, 1451, 1307, 1108 cm–1. 1H NMR (400 MHz, CDCl3):
δ = 8.08 (d, J = 8.8 Hz, 2 H), 7.38–7.28 (m, 5 H), 6.95 (d, J = 8.8 Hz,
2 H), 4.39 (s, 2 H), 3.41–3.36 (m, 1 H), 1.92–1.88 (m, 2 H), 1.65–
1.61 (m, 2 H), 1.57–1.53 (m, 1 H), 1.32–1.22 (m, 2 H), 1.17–1.06
(m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.4, 151.6, 141.4,
138.0, 128.9, 127.8, 127.4, 125.5, 122.6, 50.7, 46.3, 33.4, 25.4,
24.6.
(3p,
1-Benzyl-3-butyl-2-(4-nitrophenyl)guanidine (3q, Table 3,
Entry 2)
Yellow oil (0.0813 g, 89%). Rf = 0.30 (30% EtOAc–hexanes). FTIR
(neat): νmax = 3417, 3298, 2957, 2930, 2871, 1571, 1493, 1306,
1
1107 cm–1. H NMR (400 MHz, CDCl3): δ = 8.10 (d, J = 8.8 Hz, 2
H), 7.38–7.29 (m, 5 H), 6.97 (d, J = 8.8 Hz, 2 H), 4.42 (s, 2 H), 3.14
(t, J = 7.2 Hz, 2 H), 1.50–1.43 (m, 2 H), 1.30–1.22 (m, 2 H), 0.87
(t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.4, 152.1,
141.6, 138.0, 129.0, 127.9, 127.4, 125.5, 122.8, 46.2, 42.0, 31.6,
19.9, 13.7.
N-Cyclohexyl-N′-phenylmorpholine-4-carboximidamide
(3w, Table 3 Entry 8)
(9) Kilburn, J. P.; Lau, J.; Jones, R. C. F. Tetrahedron 2002, 58, 1739.
(10) Yavari, I.; Khalili, G.; Mirzaei, A. Helv. Chim. Acta 2010, 93, 72.
(11) General Procedure
Colorless oil (0.0418 g, 52% yield). Rf = 0.25 (40% EtOAc–hex-
anes). FTIR (neat): νmax = 3374, 2928, 2853, 1620, 1588, 1116
cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.26 (t, J = 7.6 Hz, 2 H), 6.99
(t, J = 7.6 Hz, 1 H), 6.83 (d, J = 7.6 Hz, 2 H), 3.71 (t, J = 4.8 Hz, 4 H),
3.22 (t, J = 4.8 Hz, 4 H), 3.11–3.04 (m, 1 H), 1.88–1.84 (m, 2 H),
1.68–1.62 (m, 2 H), 1.57–1.53 (m, 1 H), 1.27–1.16 (m, 2 H),
1.10–1.01 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.2, 147.2,
129.3, 122.5, 66.6, 53.8, 48.6, 33.8, 25.3, 25.2.
Amine (0.56 mmol) and Et3N (1.4 mmol) were added to a solu-
tion of aryl isothiocyanate (0.28 mmol) in CH2Cl2 (2 mL). After
stirring at r.t. for 10 min, the mixture was cooled to 0 °C, then
Ph3P (0.33 mmol) and iodine (0.33 mmol) were added in one
portion. The reaction mixture was stirred at r.t. until reaction
completion as indicated by TLC. The reaction mixture was
washed with H2O, and the combined organic layers were dried
over anhydrous Na2SO4 before filtering and concentrating in
vacuo. The residue was purified by flash column chromatogra-
phy to give the product. All products were identified by NMR
spectroscopic and mass spectrometric analysis. In the synthesis
of asymmetrically substituted guanidines, the amount of the
first amine added to aryl isothiocyanate was reduced to 0.28
mmol, while the second amine (0.28 mmol) was added after
treatment with Ph3P–I2 when the formed thiourea has com-
pletely disappeared (ca. 5–10 min).
(12) (a) Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2006, 25, 5515.
(b) Li, Q.; Wang, S.; Zhou, S.; Yang, G.; Zhu, X.; Liu, Y. J. Org.
Chem. 2007, 72, 6763. (c) Du, Z.; Li, W.; Zhu, X.; Xu, F.; Shen, Q. J.
Org. Chem. 2008, 73, 8966. (d) Li, D.; Guang, J.; Zhang, W.-X.;
Wang, Y.; Xi, Z. Org. Biomol. Chem. 2010, 8, 1816. (e) Zhang, X.;
Wang, C.; Qian, C.; Han, F.; Xu, F.; Shen, Q. Tetrahedron 2011, 67,
8790. (f) Li, Z.; Xue, M.; Yao, H.; Sun, H.; Zhang, Y.; Shen, Q. J.
Organomet. Chem. 2012, 713, 27. (g) Pottabathula, S.; Royo, B.
Tetrahedron Lett. 2012, 53, 5156. (h) Mannepalli, L. K.; Dupati,
V.; Vallabha, S. J.; Sunkara, V. M. J. Chem. Sci. 2013, 125, 1339.
(i) Wei, Y.; Wang, S.; Zhou, S.; Feng, Z.; Guo, L.; Zhu, X.; Mu, X.;
Yao, F. Organometallics 2015, 34, 1882.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 27, A–G