C.-M. Chu et al. / Tetrahedron Letters 47 (2006) 7375–7380
Table 4. FeCl3-Catalyzed conjugate addition of thiophenol to a,b-unsaturated estersa
7379
O
O
R3
Cata. (mol%)
neat, rt, air
R3
R1
RO
PhSH
+
RO
R2
SPh
R2
R1
4(a-d)
R2
2
5(a-d)
Entry
R
R1
R3
Catalyst (mol %)
Time
5b (%)
1
2
3
4
Me
Me
Et
H
H
Ph
Ph
H
H
H
H
H
Me
H
FeCl3 (15)
FeCl3 (15)
FeCl3 (15)
FeCl3 (5)
2 h
2 h
4.5 h
30 min
5a (88)
5b (76)
5c (15)
5d (95)
Me
CO2Me
a All reactions were performed by using 1 equiv (2 mmol) of esters 4 and 1.1 equiv (2.2 mmol) of thiophenol 2a in the presence of Fe(III)Cl3 under
solvent free condition and air atmosphere.
b Isolated yields.
of a green strategy for the conjugate addition of thiols to
enones. Further exploration of the scope of such addi-
tion reactions with complex structures of biological sig-
nificance is currently underway.
Supplementary data
Supplementary data associated with this article can be
3. Experimental
References and notes
3.1. General procedure for the 1,4-addition of thiophenol
2a to trans-4-phenyl-3-butene-2-one 1d in the presence of
anhydrous Fe(III)Cl3 to generate 4-phenyl-4-phenylsulfa-
nyl-butan-2-one (3da)14 (entry 12 of Table 3)
1. (a) Fluharty, A. L. In The Chemistry of the Thiol Group;
Patai, S., Ed.; Wiley: New York, 1974; p 589, Part 2; (b)
Fujita, E.; Nagao, Y. J. Bioorg. Chem. 1977, 6, 287.
2. (a) Julia, M.; Badet, B. Bull. Soc. Chim. Fr. 1975, 1363; (b)
Trost, B. M.; Keeley, D. E. J. Org. Chem. 1975, 40, 2013;
(c) Shono, T.; Matsumura, Y.; Kashimura, S.; Hatanaka,
K. J. Am. Chem. Soc. 1979, 101, 4752; (d) Chang, Y.-H.;
Pinnick, H. W. J. Org. Chem. 1978, 43, 373; (e) Shono, T.;
Matsumura, Y.; Kashimura, S.; Hatanaka, K. J. Am.
Chem. Soc. 1979, 101, 4752.
3. (a) Bergman, E. D.; Ginsberg, D.; Rappo, R. Org. React.
1959, 10, 179; (b) Oare, D. A.; Heathcock, C. A. In Topics
in Stereochemistry; Eliel, E. L., Wilen, S. H., Eds.; Wiley:
New York, 1989; Vol. 9, p 277.
4. Zhu, S.; Cohen, T. Tetrahedron 1997, 53, 17607.
5. (a) Hiemstra, H.; Wiberg, H. J. Am. Chem. Soc. 1981, 103,
417; (b) Suzuki, K.; Ikekawa, A.; Mukaiyama, T. Bull.
Soc. Chem. Jpn. 1982, 55, 3277; (c) Yamashita, H.;
Mukaiyama, T. Chem. Lett. 1985, 363; (d) Emori, E.;
Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998,
120, 4043.
6. (a) Kobyashi, S.; Ogawa, C.; Kawamura, M.; Sugiura, M.
Synlett 2001, 983; (b) Bandini, M.; Cozzi, P. G.; Giaco-
mini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J.
Org. Chem. 2002, 67, 3700; (c) Srivastava, N.; Banik, B. K.
J. Org. Chem. 2003, 68, 2109; (d) Alam, M. M.; Varala,
R.; Adapa, S. R. Tetrahedron Lett. 2003, 44, 5115; (e)
Ranu, B. C.; Dey, S. S.; Samanta, S. ARKIVOC 2005, 44;
(f) Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetra-
hedron Lett. 2005, 46, 1721; (g) Garg, S. K.; Kumar, R.;
Chakraborti, A. K. Synlett 2005, 1370.
Typical experimental procedures: In a typical experi-
ment, trans-4-phenyl-3-butene-2-one 1d (0.292 g,
2.0 mmol) and thiophenol 2a (0.249 g, 2.2 mmol) were
mixed together and then anhydrous Fe(III)Cl3
(0.0065 g, 0.02 mmol) was added and the solution stirred
at room temperature under an air atmosphere for
10 min. After the completion of the reaction (monitored
by TLC and GC), the crude mixture was worked up in
ice cold brine solution and then extracted with diethyl
ether solution (3 · 10 mL). The combined ether extract
was dried over anhydrous MgSO4, filtered and then con-
centrated in vacuo, and the resulting product was
directly charged on a small silica gel column and eluted
with a mixture of ethyl acetate/n-hexane (1:25) to afford
the pure 1,4-adduct 3da as a colourless oil (0.481 g, 94%
yield) 1H NMR (400 MHz, CDCl3) d 7.31–7.24 (m, 6H),
7.24–7.16 (m, 4H), 4.70 (dd, J = 7.8, 6.8 Hz, 1H), 3.08
(dd, J = 14.0, 7.8 Hz, 1H), 3.02 (dd, J = 14.0, 6.8 Hz,
1H), 2.05 (s, 3H); 13C NMR (100 MHz, CDCl3) d
205.64, 141.24, 134.25, 133.08, 129.02, 128.67, 127.89,
127.80, 127.61, 49.71, 48.26, 30.87. m/z (relative inten-
sity) 256 (M+, 71), 148 (11), 147 (99), 135 (9), 111
(11), 109 (100), 105 (14), 104 (41), 103 (41), 91 (18), 77
(44), 65 (37), 51 (23). HRMS calcd for C16H16OS
256.0922, found 256.0915.
7. Novak, L.; Kolontis, P.; Szantay, C.; Aszodi, D.; Kajtar,
M. Tetrahedron 1982, 38, 153.
8. In our studies, a solution of deionized water was treated
with a mixture of 2-cyclohexen-1-one and thiophenol
precisely under the conditions given in Tale’s paper as
follows. Only 15% of the expected product was observed
by NMR analysis. As expected, similar results were
observed and only 35% and 20% of product, for a 24 h
reaction were found when chalcone and trans-4-phenyl-3-
Acknowledgement
Financial support provided by the National Science
Council of the Republic of China is gratefully
acknowledged.