tioned chiral quinuclidine base. It was envisaged that the
activation of both nucleophilic and electrophilic reaction
components in a controlled chiral environment could offer
distinct advantages with respect to both rate and selectivity.
The results of our preliminary investigations to test this
premise are outlined in Table 1. As a starting point we chose
to study the effect of solvent polarity and reaction concentration
on the asymmetric methanolysis of 1 by modified cinchona
alkaloids 3-6 at ambient temperature. From a catalyst activity
perspective the initial results were promising: as little as 1 mol
% of the bifunctional quinine-derived thiourea catalyst 3 could
promote the reaction to high levels of conversion in 1 day
(entries 1-5). Methyl tert-butyl ether proved to be the opti-
mumsolvent of those tested; in this medium (0.4 M concentra-
tion) 2 could be prepared in 67% ee. While this level of
selectivity was disappointing, we were subsequently pleased to
FIGURE 1. Bifunctional cinchona alkaloid-derived catalysts.
and catalysts.7,9 As is the case with any catalytic methodology
scope for further development remains: for instance, the high
catalyst loadings required using difficult substrates and the
maintenance of the reaction at low temperatures (-20, -30, or
-55 °C) for extended periods (48-60 h) would not be optimal
for industrial applications of this technology.11,12
(14) For selected examples of the use of chiral (thio)ureas in catalysis
see: (a) Vachal, P.; Jacobsen, E. N. Org. Lett. 2000, 2, 867. (b) Vachal,
P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012. (c) Wenzel, A.
G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964. (d) Wenzel, A.
G.; Lalonde, M. P.; Jacobsen, E. N. Synlett 2003, 1919. (e) Okino, T.;
Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (f) Hoashi,
Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett. 2004, 45, 9185. (g) Okino,
T.; Nakamura, S.; Furukawa, T.; Takemoto, Y.; Org. Lett. 2004, 6, 625.
(h) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron
Lett. 2004, 45, 5589. (i) Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc.
2004, 126, 4102. (j) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,
126, 10558. (k) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005,
44, 466. (l) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem., Int. Ed.
2005, 44, 4032. (m) Berkessel, A.; Cleemann, F.; Mukherjee, S.; Mu¨ller,
T. N.; Lex, J. Angew. Chem., Int. Ed. 2005, 44, 807. (n) Okino, T.; Hoashi,
Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127,
119. (o) Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.; Takemoto, Y. Chem.
Eur. J. 2005, 11, 1. (p) Berkessel, A.; Cleemann, F.; Mukherjee, S.; Mu¨ller,
T. N.; Lex. J. Chem. Commun. 2005, 1898. (q) Herrera, R. P.; Sgarzani,
V.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576. (r)
Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.; Heimstra, H.
Angew. Chem., Int. Ed. 2006, 45, 929. (s) Steele, R. M.; Monti, C.; Gennari,
C.; Piarulli, U.; Andreoli, F.; Vanthuyne, N.; Roussel, C. Tetrahedron:
Asymmetry 2006, 17, 999. (t) Liu, T.-Y.; Long, J.; Li, B.-J.; Jiang, L.; Li,
R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem. 2006, 2097. (u)
Inokuma, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2006, 128, 9413.
(v) Fleming, E. M.; McCabe, T.; Connon, S. J. Tetrahedron Lett. 2006, 47,
7037. (w) Xu, X.; Yabuta, T.; Yuan, P.; Takemoto, Y. Synlett 2006, 137.
(x) Miyabe, H.; Tuchida, S.; Yamauchi, M.; Takemoto, Y. Synthesis 2006,
3295. (y) Berkessel, A.; Mukherjee, S.; Mu¨ller, T. N.; Cleemann, F.; Roland,
K.; Brandenburg, M.; Neudo¨rfl, J.-M.; Lex, J. Org. Biomol. Chem. 2006,
4, 4319. (z) Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451.
(15) Additional selected examples of the use of chiral (thio)ureas in
catalysis: (a) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128,
7170. (b) Yalonde, M. P.; Chen. Y.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2006, 45, 6366. (c) Xuenong, X.; Furukawa, T.; Okino, T.; Miyabe,
H.; Takemoto, Y. Chem. Eur. J. 2006, 12, 466. (d) Pan, S. C.; Zhou, J.;
List, B. Angew. Chem., Int. Ed. 2007, 46, 612. (e) Pan, S. C.; List, B. Org.
Lett. 2007, 9, 1149. (f) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am.
Chem. Soc. 2007, 129, 6686. (g) Sibi, M. P.; Itoh, K. J. Am. Chem. Soc.
2007, 129, 8064. (h) Procuranti, B.; Connon, S. J. Chem. Commun. 2007,
1421. (i) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007,
129, 8976. (j) Tan, K. L; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46,
1315.
We therefore became interested in the evaluation of chiral
bifunctional (thio)ureas (Figure 1) as catalysts for these reac-
tions. This catalyst class has been shown13 to be capable of the
bifunctional catalysis of a number of asymmetric addition
reactions involving the addition of an acidic pronucleophile to
an electrophile incorporating hydrogen bond accepting func-
tionality; however, to the best of our knowledge these materials
had not been tested as catalysts for reactions involving anhydride
electrophiles.14,15 Oda4 detected a significant kinetic isotope
effect (kH/kD ) 2.3) associated with the addition of methanol
to cis-2,4-dimethylglutaric anhydride catalyzed by quinine,
which is strongly indicative of a general base catalysis mech-
anism for these reactions.16 We therefore postulated that 3-6
held promise as efficient promoters of these reactions which
could selectively bind and activate the anhydride electrophile
by hydrogen bonding to the (thio)urea moiety17,18 and subse-
quently encourage attack at a single anhydride carbonyl moiety
through general-base catalysis mediated by the suitably posi-
(11) For a recent example of non-alkaloid-derived catalysts for this
reaction see: Okamatsu, T.; Irie, R.; Katsuki, T. Synlett 2007, 1569.
(12) For a report detailing a bifunctional catalyst capable of the
asymmetric thiolysis of meso anhydrides see: Honjo, T.; Sano, S.; Shiro,
M.; Nagao, Y. Angew. Chem., Int. Ed. 2005, 44, 5838.
(13) For examples see: (a) Li, B.-J.; Jang, L.; Liu, M.; Chen, Y.-C.;
Ding, L.-S.; Wu, Y. Synlett 2005, 603. (b) Vakulya, B.; Varga, S.; Csa´mpai,
A.; Soo´s, T. Org. Lett. 2005, 7, 1967. (c) McCooey, S. H.; Connon, S. J.
Angew. Chem., Int. Ed. 2005, 44, 6367. (d) Ye, J.; Dixon, D. J.; Hynes, P.
S. Chem. Commun. 2005, 4481. (e) Tillman, A. L.; Ye, J.; Dixon, D. J.
Chem. Commun. 2006, 1191. (f) McCooey, S. H.; McCabe, T.; Connon, S.
J. J. Org. Chem. 2006, 71, 7494. (g) Mattson, A. E.; Zuhl, A. M.; Reynolds,
T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932. (h) Wang, J.; Li,
H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc.
2006, 128, 12652. (i) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc.
2006, 128, 6048. (j) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. J.
Am. Chem. Soc. 2006, 128, 8156. (k) Bode, C. M.; Ting, A.; Schaus, S. E.
Tetrahedron 2006, 62, 11499. (l) Hamza, A.; Schubert, G.; Soo´s, T.; Pa´pai,
I. J. Am. Chem. Soc. 2006, 128, 13151. (m) Liu, T.-Y.; Li. R.; Chai, Q.;
Long, J.; Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Chem. Eur. J. 2007,
13, 319. (n) Amere, M.; Lasne, M.-C.; Rouden, J. Org. Lett. 2007, 9, 2621.
(o) Hynes, P. S.; Stranges, D.; Stupple, P. A.; Guarna, A.; Dixon, D. A.
Org. Lett. 2007, 9, 2107. (p) Liu, T.-Y.; Cui, H.-L.; Chai, Q.; Long, J.; Li,
B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Chem. Commun. 2007, 2228. (q)
Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 3830.
(r) Gu, C.-L.; Liu, L.; Sui, Y.; Zhao, J.-L.; Wang, D.; Chen, Y. J.
Tetrahedron: Asymmetry 2007, 18, 455. (s) Song, J.; Shih, H.-W.; Deng,
L. Org. Lett. 2007, 9, 603. (t) Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng,
L. J. Am. Chem. Soc. 2007, 129, 768. (u) Zu, L.; Wang, J.; Li, H.; Xie, H.;
Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (v) Bartoli, G.;
Bosco, M.; Carlone, A.; Locatelli, M.; Mazzanti, A.; Sambri, L.; Melchiorre,
P. Chem. Commun. 2007, 722.
(16) Mass spectroscopic evidence supporting a nucleophilic catalysis
mechanism has also been reported, thus both mechanisms may operate
simultaneously, see: Bigi, F.; Carloni, S.; Maggi, R.; Mazzacani, A.; Sartori,
G.; Tanzi, G. J. Mol. Catal. A 2002, 533, 182-183.
(17) For selected recent reviews on the use of hydrogen bonding in
catalysis see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2006,
348, 999. (b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006,
45, 1520. (c) Connon, S. J. Chem. Eur. J. 2006, 12, 5418. (d) Connon, S.
J. Angew. Chem., Int. Ed. 2006, 45, 3909. (e) Takemoto, Y. Org. Biomol.
Chem. 2005, 3, 4299. (f) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43,
2062. (g) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289.
(18) A recent study has calculated potentially catalytically significant
hydrogen bonding between an anhydride substrate and a urea derivative:
Fleming, E. M.; Quigley, C.; Rozas, I.; Connon, S. J. J. Org. Chem. 2008,
73, 948.
J. Org. Chem, Vol. 73, No. 6, 2008 2455