Journal of Medicinal Chemistry
Article
Enhancement of cytochrome P-450 3A4 catalytic activities by
cytochrome b(5) in bacterial membranes. Drug Metab. Dispos. 1999,
27, 999−1004.
3A4 in nanodiscs by localized surface plasmon resonance
spectroscopy. Anal. Chem. 2009, 81, 3754−3759.
(24) Fleishaker, J. C.; Herman, B. D.; Carel, B. J.; Azie, N. E.
Interaction between ketoconazole and almotriptan in healthy
volunteers. J. Clin. Pharmacol. 2003, 43, 423−427.
(4) Evans, W. E.; Relling, M. V. Pharmacogenomics: translating
functional genomics into rational therapeutics. Science 1999, 286,
487−491.
(25) Vinh, T. K.; Ahmadi, M.; Delgado, P. O.; Perez, S. F.; Walters,
H. M.; Smith, H. J.; Nicholls, P. J.; Simons, C. 1-[(Benzofuran-2-
yl)phenylmethyl]-triazoles and -tetrazoles: potent competitive
inhibitors of aromatase. Bioorg. Med. Chem. Lett. 1999, 9, 2105−2108.
(26) Korzekwa, K. R.; Jones, J. P.; Gillette, J. R. Theoretical studies
on cytochrome P-450 mediated hydroxylation: a predictive model for
hydrogen atom abstractions. J. Am. Chem. Soc. 1990, 112, 7042−7046.
(27) Korzekwa, K. R.; Jones, J. P. Predicting the cytochrome P450
mediated metabolism of xenobiotics. [Review]. Pharmacogenetics 1993,
3, 1−18.
(28) Jones, J. P.; Mysinger, M.; Korzekwa, K. R. Computational
models for cytochrome P450: a predictive electronic model for
aromatic oxidation and hydrogen atom abstraction. Drug Metab.
Dispos. 2002, 30, 7−12.
(29) Olsen, L.; Rydberg, P.; Rod, T. H.; Ryde, U. Prediction of
activation energies for hydrogen abstraction by cytochrome p450. J.
Med. Chem. 2006, 49, 6489−6499.
(30) Porter, W. R.; Branchflower, R. V.; Trager, W. F. A kinetic
method for the determination of multiple forms of microsomal
cytochrome P-450. Biochem. Pharmacol. 1977, 26, 549−550.
(31) Roberts, A. G.; Campbell, A. P.; Atkins, W. M. The
thermodynamic landscape of testosterone binding to cytochrome P
450 3A4: ligand binding and spin state equilibria. Biochemistry 2005,
44, 1353−1366.
(32) Omura, T.; Sato, R. The carbon monoxide binding pigment of
liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem.
1964, 239, 2370−2378.
(33) McOmie, J. F. W.; Warrs, M. L.; West, D. E. Demethylation of
aryl methyl ethers by boron tribromide. Tetrahedron 1968, 24, 2289−
2292.
(34) Stenmark, H. G.; Brazzale, A.; Ma, Z. Biomimetic synthesis of
macrolide/ketolide metabolites through a selective N-demethylation
reaction. J. Org. Chem. 2000, 65, 3875−3876.
(35) Rosenau, T.; Hofinger, A.; Potthast, A.; Kosma, P. A general,
selective, high-yield N-demethylation procedure for tertiary amines by
solid reagents in a convenient column chromatography-like setup. Org.
Lett. 2004, 6, 541−544.
(36) Acosta, K.; Cessac, J. W.; Rao, P. N.; Kim, H. K. Oxidative
demethylation of 4-substituted N,N-dimethylanilines with iodine and
calcium oxide in the presence of methanol. Chem. Commun. 1994,
1985−1986.
(37) Dauben, H. J.; McCoy, L. L. N-Bromosuccinimide. III.
Stereochemical course of benzylic bromination. J. Am. Chem. Soc.
1959, 81, 5404−5409.
(38) Barluenga, J.; Campos-Gomez, E.; Rodriguez, D.; Gonzalez-
Bobes, F.; Gonzalez, J. M. New iodination reactions of saturated
hydrocarbons. Angew. Chem., Int. Ed. 2005, 44, 5851−5854.
(39) Ghaffarzadeh, M.; Bolourtchiana, M.; Gholamhossenia, M.;
Mohsenzadeha, F. Synthesis of arylaldehydes: Br2/DMSO catalytic
system for the chemoselective oxidation of methylarenes. Appl. Catal.
A 2007, 333, 131−135.
(40) Nakanishi, M.; Bolm, C. Iron-catalyzed benzylic oxidation with
aqueous tert-butyl hydroperoxide. Adv. Synth. Catal. 2007, 349, 861−
864.
(5) Li, A. P.; Kaminski, D. L.; Rasmussen, A. Substrates of human
hepatic cytochrome P450 3A4. Toxicology 1995, 104, 1−8.
(6) Dowers, T. S.; Rock, D. A.; Rock, D. A.; Perkins, B. N. S.; Jones,
J. P. An analysis of the regioselectivity of aromatic hydroxylation and
N-oxygenation by cytochrome P450 enzymes. Drug Metab. Dispos.
2004, 32, 328−32.
(7) Cooper, H. L.; Groves, J. T. Molecular probes of the mechanism
of cytochrome P450. Oxygen traps a substrate radical intermediate.
Arch. Biochem. Biophys. 2010, 507, 111−118.
(8) Das, A.; Sligar, S. G. Modulation of the cytochrome P450
reductase redox potential by the phospholipid bilayer. Biochemistry
2009, 48, 12104−12112.
(9) Jefcoate, C. R. Measurement of substrate and inhibitor binding to
microsomal cytochrome P-450 by optical-difference spectroscopy.
Methods Enzymol. 1978, 52.
(10) Schenkman, J. B. Studies on the nature of the type I and type II
spectral changes in liver microsomes. Biochemistry 1970, 9, 2081−
2091.
(11) Schenkman, J. B.; Remmer, H.; Estabrook, R. W. Spectral
studies of drug interaction with hepatic microsomal cytochrome. Mol.
Pharmacol. 1967, 3, 113−123.
(12) Ahlstrom, M. M.; Zamora, I. Characterization of type II ligands
in CYP2C9 and CYP3A4. J. Med. Chem. 2008, 51, 1755−1763.
(13) Ballard, S. A.; Lodola, A.; Tarbit, M. H. A comparative study of
1-substituted imidazole and 1,2,4-triazole antifungal compounds as
inhibitors of testosterone hydroxylations catalysed by mouse hepatic
microsomal cytochromes P-450. Biochem. Pharmacol. 1988, 37, 4643−
4651.
(14) Testa, B.; Jenner, P. Inhibitors of cytochrome P-450s and their
mechanism of action. Drug Metab. Rev. 1981, 12, 1−117.
(15) Chiba, M.; Tang, C.; Neway, W. E.; Williams, T. M.; Desolms,
S. J.; Dinsmore, C. J.; Wai, J. S.; Lin, J. H. P450 interaction with
farnesyl-protein transferase inhibitors. Metabolic stability, inhibitory
potency, and P450 binding spectra in human liver microsomes.
Biochem. Pharmacol. 2001, 62, 773−776.
(16) Chiba, M.; Jin, L.; Neway, W.; Vacca, J. P.; Tata, J. R.; Chapman,
K.; Lin, J. H. P450 interaction with HIV protease inhibitors:
relationship between metabolic stability, inhibitory potency, and
P450 binding spectra. Drug Metab. Dispos. 2001, 29, 1−3.
(17) Peng, C. C.; Pearson, J. T.; Rock, D. A.; Joswig-Jones, C. A.;
Jones, J. P. The effects of type II binding on metabolic stability and
binding affinity in cytochrome P450 CYP3A4. Arch. Biochem. Biophys.
2010, 497, 68−81.
(18) Pearson, J.; Dahal, U. P.; Rock, D.; Peng, C. C.; Schenk, J. O.;
Joswig-Jones, C.; Jones, J. P. The kinetic mechanism for cytochrome
P450 metabolism of type II binding compounds: evidence supporting
direct reduction. Arch. Biochem. Biophys. 2011, 511, 69−79.
(19) Peng, C. C.; Rushmore, T.; Crouch, G. J.; Jones, J. P. Modeling
and synthesis of novel tight-binding inhibitors of cytochrome P450
2C9. Bioorg. Med. Chem. 2008, 16, 4064−4074.
(20) Jones, J. P.; Joswig-Jones, C. A.; Hebner, M.; Chu, Y.; Koop, D.
R. The effects of nitrogen-heme-iron coordination on substrate
affinities for cytochrome P450 2E1. Chem.-Biol. Interact. 2011, 193,
50−56.
(41) Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L. Selective oxidation at
carbon adjacent to aromatic systems with IBX. J. Am. Chem. Soc. 2001,
123, 3183−3185.
(21) Peng, C. C.; Cape, J. L.; Rushmore, T.; Crouch, G. J.; Jones, J. P.
Cytochrome P450 2C9 type II binding studies on quinoline-4-
carboxamide analogues. J. Med. Chem. 2008, 51, 8000−8011.
(22) Yano, J. K.; Denton, T. T.; Cerny, M. A.; Zhang, X.; Johnson, E.
F.; Cashman, J. R. Synthetic inhibitors of cytochrome P-450 2A6:
inhibitory activity, difference spectra, mechanism of inhibition, and
protein cocrystallization. J. Med. Chem. 2006, 49, 6987−7001.
(23) Das, A.; Zhao, J.; Schatz, G. C.; Sligar, S. G.; Van Duyne, R. P.
Screening of type I and II drug binding to human cytochrome P450-
290
dx.doi.org/10.1021/jm201207h | J. Med. Chem. 2012, 55, 280−290