Targeted overproduction of sialic acids
Hoyer, L.L., Hamilton, A.C., Steenbergen, S.M., and Vimr, E.R. (1992)
Cloning, sequencing, and distribution of the Salmonella typhimurium LT2
sialidase gene, nanH, provide evidence for interspecies gene transfer. Mol.
Microbiol., 6, 873–884.
Karlsson, K.A. (1998) Meaning and therapeutic potential of microbial
recognition of host glycoconjugates. Mol. Microbiol., 29, 1–11.
Kornfeld, S., Kornfeld, R., Neufeld, E.F., and O’Brien, P.J. (1964) The
feedback control of sugar nucleotide biosynthesis in liver. Proc. Natl Acad.
Sci. USA, 52, 371–379.
Lawrence, S.M., Huddleston, K.A., Pitts, L.R., Nguyen, N., Lee, Y.C.,
Vann, W.F., Coleman, T.A., and Betenbaugh, M.J. (2000) Cloning and
expression of the human N-acetylneuraminic acid phosphate synthase gene
with 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid biosynthetic
ability. J. Biol. Chem., 275, 17869–17877.
Liu, J.L.-C., Shen, G.J., Ichikawa, Y., Rutan, J.F., Zapata, G., Vann, W.F., and
Wong, C.H. (1992) Overproduction of CMP-sialic acid synthetase for
organic synthesis. J. Am. Chem. Soc., 114, 3901–3910.
Martinez, J., Steenbergen, S., and Vimr, E. (1995) Derived structure of the
putative sialic acid transporter from Escherichia coli predicts a novel sugar
permease domain. J. Bacteriol., 177, 6505–6010.
Maru, I., Ohta, J., Murata, K., and Tsukada, J. (1996) Molecular cloning and
identification of N-acyl-D-glycosamine 2-epimerase from porcine kidney
as a renin-binding protein. J. Biol. Chem., 271, 16294–16299.
Masson, L., and Holbein, B.E. (1983) Physiology of sialic acid capsular
polysaccharide synthesis in serogroup B Neisseria meningitidis. J. Bacteriol.,
154, 728–736.
Sialic acid analysis
For quantitation of Neu5Ac, lyophilized samples of hydro-
lyzed culture products of known volume were reconstituted in
250 µl of deionized water and subjected to ultrafiltration
(Ultrafree-MC 100,000 NMWL Filter Unit, Millipore).
Neu5Ac analysis was carried out with a Dionex model DX-300
high-performance liquid chromatography system equipped
with pulsed amperometric detection. Isocratic runs were parti-
tioned using a Carbopac PA-1 column in 0.1 M NaOH–0.05 M
sodium acetate at a flow rate of 1.0 ml/min. Elution times and
concentrations were compared with a standard curve generated
from commercial Neu5Ac (Sigma). Relative detector responses
shown in Figure 2 and 3 are in nA. Unless indicated otherwise,
data were normalized to express the concentration of sialate
per unit of A600 per ml of culture.
Statistical analyses
Differences in sialate accumulation between E. coli strains
EV136 and EV240 were analyzed by the t-test. Differences in
sialate accumulation among E. coli EV5 and three isogenic
transductants (Table III) were analyzed by analysis of variance
using contrasts to compare the transductants to EV5. P-values
< 0.05 were considered significant.
Miller, J.H. (1972) Experiments in molecular genetics. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY.
Munster A.K., Eckhardt, M., Potvin, B., Muhlenhoff, M., Stanley, P., and
Gerardy-Schahn, R. (1998) Mammalian cytidine 5′-monophosphate N-acetyl-
neuraminic acid synthetase:
a nuclear protein with evolutionarily
conserved structural motifs. Proc. Natl Acad. Sci. USA, 95, 9140–9145.
Petersen, M., Fessner, W.-D., Frosch, M., and Luneberg, E. (2000) The siaA
gene involved in capsule polysaccharide biosynthesis of Neisseria
meningitidis B codes for N-acetylglucosamine-6-phosphatse 2-epimerase
activity. FEMS Microbiol. Lett., 184, 161–164.
Acknowledgment
We thank Willie Vann (FDA, Bethesda, MD) for critically
reviewing the manuscript before submission. The research
reported here was supported by NIH grant RO1 AI42015 to E.V.
Plumbridge, J., and Vimr, E. (1999) Convergent pathways for utilization of the
amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetyl-
neuraminic acid by Escherichia coli. J. Bacteriol., 181, 47–54.
Rodriguez-Aparico, L.B., Ferrero, M.A., and Reglero, A. (1995) N-acetyl-D-
neuraminic acid synthesis in Escherichia coli K1 occurs through condensation
of N-acetyl-D-mannosamine and pyruvate. Biochem. J., 308, 501–505.
Silver, R.P., and Vimr, E.R. (1990) Polysialic acid capsule of Escherichia coli
K1. In Iglewski, B., and Miller, V., eds., The Bacteria 11, Molecular Basis
of Bacterial Pathogenesis. Academic Press, New York, 39–60.
Soares, R.M.A., Soares, R.M. de A., Alviano, D.S., Angluster, J., Alvian, C.S.,
and Travassos, L.R. (2000) Identification of sialic acids on the cell surface
of Candida albicans. Biochim. Biophys. Acta, 1474, 262–268.
Stasche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka L, Moormann, P. and
Reutter, W. (1997) A bifunctional enzyme catalyzes the first two steps in
N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and
functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetyl-
mannosamine kinase. J. Biol. Chem., 272, 24319–24324.
Abbreviations
CAA, casamino acids; Fru, fructose; Glc, glucose; GlcN,
glucosamine; GlcNAc, N-acetylglucosamine; Gro, glycerol;
HPAEC/PAD, high pH anion exchange chromatography with
pulsed amperometric detection; LB, Luria Bertani medium;
LPS, lipopolysaccharide; ManNAc, N-acetylmannosamine;
NCAM, neural cell adhesion molecule; Neu5Ac, N-acetyl-
neuraminic acid; PEP, phosphoenolpyruvate; PSA, polysialic
acid; PTS, phosphotransferase system; Pyr, pyruvate; TCA,
trichloroacetic acid.
Steenbergen, S.M., and Vimr, E.R. (1990) Mechanism of polysialic acid chain
elongation in Escherichia coli K1. Mol. Microbiol., 4, 603–611.
Steenbergen, S.M., Wrona, T.J., and Vimr, E.R. (1992) Functional analysis of
the sialyltransferase complexes in Escherichia coli K1 and K92. J. Bacteriol.,
174, 1099–1108.
Vann, W.F., Tavarez, J.J., Crowley, J., Vimr, E., and Silver, R.P. (1997)
Purification and characterization of the Escherichia coli K1 neuB gene
product N-acetylneuraminic acid synthetase. Glycobiology, 7, 697–701.
Vimr, E.R. (1992) Selective synthesis and lasbelling of the polysialic acid
capsule in Escherichia coli K1 strains with mutations in nanA and neuB.
J. Bacteriol., 174, 6191–6197.
References
Barrallo, S., Reglero, A., Revilla-Nuin, B., Martinez-Blanco, H., Rodriguez-
Aparicio, L.B., and Ferrero, M.A. (1999) Regulation of capsular polysialic
acid biosynthesis by temperature in Pasteurella haemolytica A2. FEBS
Lett., 445, 325–328.
Ferrero, M.A., Reglero, A., Fernandez-Lopez, M., Ordas, R., and Rodriguez-
Aparicio, L.B. (1996) N-acetyl-D-neuraminic acid lyase generates the
sialic acid for colominic acid biosynthesis in Escherichia coli K1.
Biochem. J., 317, 157–165.
Gilbert, M., Bayer, R., Cunningham, A.-M., DeFrees, S., Gao, Y.,
Watson, D.C., Young, N.M., and Wakarchuk, W. (1998) The synthesis of
Vimr, E.R., and Troy, F.A. (1985a) Identification of an inducible catabolic
system for sialic acids (nan) in Escherichia coli. J. Bacteriol., 164, 845–853.
Vimr, E.R., and Troy, F.A. (1985b) Regulation of sialic acid metabolism in
Escherichia coli: role of N-acylneuraminate pyruvate-lyase. J. Bacteriol.,
164, 854–860.
Vimr, E., Steenbergen, S., and Cieslewicz, M. (1995) Biosynthesis of poly-
sialic acid by Escherichia coli K1. J. Industrial Microbiol., 15, 352–360.
Warren, L. (1994) Bound Carbohydrates in Nature. Cambridge University
Press, Cambridge, UK.
sialylated oligosaccharides using
a CMP-Neu5Ac synthetase/sialyl-
transferase fusion. Nature Biotechnol., 16, 769–772.
Hoffman, B.J., Broadwater, J.A., Johnson, P., Harper, J., Fox, B.G., and
Kenealy, W.R. (1995) Lactose fed-batch overexpression of recombinant
metalloproteins in Escherichia coli BL21(DE3): Process control yielding
high levels of metal-incorporated, soluble protein. Protein Exp. Purif., 6,
646–654.
539