The key steps of our new enamide synthesis can either be
carried out in a consecutive manner or, preferentially, in “one
pot” (for experimental details, see the Supporting Informa-
tion). Thus, N-acylation of amine syn-9 under standard
conditions followed by addition of KOtBu to the solution
of the resulting amide at low temperature affords the desired
enamides (E)-10 in virtually quantitative yield; the crude
material is usually pure enough for further use (>95% by
1H NMR). Analogously, anti-9 is converted into the diaster-
eomeric products (Z)-10. This includes a synthesis of
lansiumamide A (1, Table 1, entry 11) which compares
favorably with a previous approach to this natural product
reported in the literature.1b Analytically pure samples are
obtained by flash chromatography; although care was taken
to minimize the amount of adsorbent used as well as the
time of exposure, some loss of material can hardly be avoided
due to the lability of some of the products. This explains
why the isolated yields shown in Table 1 are only in the
range of 56-89%. It was noticed that the hydrolysis is
particularly facile for (Z)-configured enamides. Most im-
portant, however, is the fact that all products are obtained
as single diastereomers. Thus, the configuration of the
starting material is transferred in a predictable manner and
with high integrity into the final product. This rigorously
stereoselective and controlable course distinguishes the
protocol outlined above from many of the alternative methods
previously described in the literature. Further work aimed
at the implementation of this new strategy into the total
synthesis of bioactive target molecules18 is currently under-
way and will be reported soon.
(7) Total syntheses: (a) Wu, Y.; Esser, L.; De Brabander, J. K. Angew.
Chem. 2000, 112, 4478; Angew. Chem., Int. Ed. 2000, 39, 4308. (b)
Labrecque, D.; Charron, S.; Rej, R.; Blais, C.; Lamothe, S. Tetrahedron
Lett. 2001, 42, 2645. (c) Snider, B. B.; Song, F. Org. Lett. 2001, 3, 1817.
(d) Smith, A. B.; Zheng, J. Synlett 2001, 1019. (e) Wu, Y.; Seguil, O. R.;
De Brabander, J. K. Org. Lett. 2000, 2, 4241. (f) Fu¨rstner, A.; Dierkes, T.;
Thiel, O. R.; Blanda, G. Chem. Eur. J. 2001, 7, 5284.
(8) Partial syntheses: (a) Fu¨rstner, A.; Thiel, O. R.; Blanda, G. Org.
Lett. 2000, 2, 3731. (b) Georg, G. I.; Ahn, Y. M.; Blackman, B.; Farokhi,
F.; Flaherty, P. T.; Mossman, C. J.; Roy, S.; Yang, K. L. Chem. Commun.
2001, 255. (c) Feutrill, J. T.; Holloway, G. A.; Hilli, F.; Hugel, H. M.;
Rizzacasa, M. A. Tetrahedron Lett. 2000, 41, 8569.
(9) Various methods allowing the formation of enamides have been
described in the literature. For leading references see the following and
literature cited therein: (a) Shen, R.; Porco, J. A., Jr. Org. Lett. 2000, 2,
1333. (b) Snider, B. B.; Song, F. Org. Lett. 2000, 2, 407. (c) Hudrlick, P.
F.; Hudrlick, A. M.; Rona, R. J.; Misra, R. N.; Withers, G. P. J. Am. Chem.
Soc. 1977, 99, 1993. (d) Alonso, D. A.; Alonso, E.; Na´jera, C.; Yus, M.
Synlett 1997, 491. (e) Ogawa, T.; Kiji, T.; Hayami, K.; Suzuki, H. Chem.
Lett. 1991, 1443. (f) Trost, B. M.; Surivet, J.-P. Angew. Chem. 2001, 113,
1516; Angew. Chem., Int. Ed. 2001, 40, 1468. (g) Boar, R. B.; McGhie, J.
F.; Robinson, M.; Barton, D. H. R.; Horwell, D. C.; Stick, R. V. J. Chem.
Soc., Perkin Trans. 1 1975, 1237. (h) Brettle, R.; Mosedale, A. J. J. Chem.
Soc., Perkin Trans. 1 1988, 2185. (i) Kondo, T.; Tanaka, A.; Kotachi, S.;
Watanabe, Y. J. Chem. Soc., Chem. Commun. 1995, 413. (j) Ogawa, T.;
Kiji, T.; Hayami, K.; Suzuki, H. Chem. Lett. 1991, 1443. (k) Ramamurthy,
B.; Sugumaran, M. Synthesis 1987, 523. (l) For enecarbamates see:
Overman, L. E.; Taylor, G. F.; Petty, C. B.; Jessup, P. J. J. Org. Chem.
1978, 43, 2164.
(10) For pertinent reviews see: (a) Ager, D. J. Org. React. 1990, 38, 1.
(b) Ager, D. J. Synthesis 1984, 384.
(11) Brook, M. A. Silicon in Organic, Organometallic and Polymer
Chemistry; Wiley: New York, 2000.
(12) It is well established that a syn-elimination of the -OH and -SiMe3
group takes place in base-induced Peterson reactions, cf. (a) Hudrlick, P.
F.; Peterson, D. J. Am. Chem. Soc. 1975, 97, 1464. (b) Hudrlick, P. F.;
Peterson, D.; Rona, R. J. J. Org. Chem. 1975, 40, 2263.
(13) The use of epoxysilanes as substrates for the synthesis of enamides
has precedence in the two examples reported in ref 9c. In these cases the
epoxide ring is opened by acetonitrile used as solvent which clearly limits
the scope of the method.
Acknowledgment. Generous financial support by the
Deutsche Forschungsgemeinschaft (Leibniz award to A.F.)
and the Fonds der Chemischen Industrie is gratefully
acknowledged.
Supporting Information Available: Representative pro-
cedures as well as analytical and spectroscopic data of all
new compounds. This material is available free of charge
via the Internet at http:pubs.acs.org.
OL016848P
(14) The vinylsilanes used have been prepared according to the following
references. (a) (E)-6a (R1 ) n-pentyl): Koumaglo, K.; Chan, T. H.
Tetrahedron Lett. 1984, 25, 717. (b) (Z)-6a (R1 ) n-pentyl): Page, P. C.
B.; Rosenthal, S. Tetrahedron 1990, 46, 2573. (c) (Z)-6b (R1 ) Ph): Barton,
T.; Lin, J.; Ijadi-Maghsoodi, S.; Power, M. D.; Zhang, X.; Ma, Z.; Shimizu,
H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 11695. (d) (E)-6b (R1 )
Ph): Jeffery, T. Tetrahedron Lett. 1999, 40, 1673.
(15) (a) Soderquist, J. A.; Santiago, B. Tetrahedron Lett. 1989, 30, 5693.
(b) Alexakis, A.; Jachiet, D. Tetrahedron 1989, 45, 381.
(16) Chakraborty, T. K.; Reddy, G. V. Tetrahedron Lett. 1990, 31, 1335.
(17) For a compilation see: Larock, R. C. Synthetic Organic Methodol-
ogy: ComprehensiVe Organic Transformations. A Guide to Functional
Group Preparations; VCH: Weinheim, 1989.
(18) Fu¨rstner, A. Synlett 1999, 1523.
Org. Lett., Vol. 3, No. 24, 2001
3957