J. Clayden, C. J. Menet / Tetrahedron Letters 44 (2003) 3059–3062
3061
in yields of 80% and 66%, respectively. In a further
demonstration of the potential of the isoindolones in
synthesis, it was also possible to transform isoindolone
11 into the fully unsaturated isoindole 28 by treatment
with a Grignard reagent.30
Tetrahedron Lett. 2001, 42, 3407.
18. Clayden, J.; Menet, C. J.; Tchabanenko, K. Tetrahedron
2002, 58, 4727.
19. We speculate that the single diastereoisomer of 5 arises
from non-diastereoselective oxidation followed by
stereoelectronically favoured elimination from one
diastereoisomer only. Assignment of stereochemistry to 5
is speculatively based on the possibility that the
diastereoisomer with H and OH syn eliminates more
slowly.
20. General procedure for cyclisation–rearomatisation: The
amide 1 (0.43 g, 2.52 mmol) in dry THF (30 ml) was
added to a solution of freshly prepared LDA (2.75 mmol)
in THF (10 ml) at 0°C under nitrogen. After 2 h at 20°C,
the nitrogen line was replaced with a drying tube and
stirring was continued for 12 h. The mixture was concen-
trated and CH2Cl2 (30 ml) was added. The solution was
cooled to 0°C, and triethylamine (6.3 mmol) and
methanesulfonyl chloride (3.04 mmol) were added. After
1 h at 0°C water was added, the layers were separated
and the aqueous phase was extracted with CH2Cl2. The
combined organic fractions were dried (MgSO4) and con-
centrated to yield the crude product. Purification by flash
chromatography, eluting with 7:3 petrol–EtOAc, afforded
the dihydroisoindolone 6 as a white solid (0.23 g, 60%).
Mp=140–141°C. Found: M+H+ 296.1654; C19H22NO2
requires M, 296.1650; m/z (EI) 296 (M+H+, 100%); lH
(300 MHz, CDCl3) 7.75 (1H, d, J 8.5, H7), 7.4–7.2 (5H,
m, ArH), 6.93 (1H, dd, J 8.5, 2, H6), 6.52 (1H, d, J 2,
H4), 5.65 (1H, s, H3), 3.77 (3H, s, CH3O), 1.48 (9H, s,
tert-butyl); lC (75 MHz, CDCl3) 169.8, 162.6, 148.7,
141.1, 128.9, 127.7, 126.1, 124.7, 124.4, 114.5, 107.2, 64.6,
55.7, 55.4, 28.6; wmax (film)/cm−1 1677 (CꢀO).
Acknowledgements
We are grateful to Aventis (C.J.M.) for support, and to
Dr. Darren Mansfield for helpful discussions.
References
1. Donohoe, T. J. Sci. Synthesis 2001, 10, 653.
2. Houben Weyl; Herd, K. J.; Kreher, R., Eds.; Thieme:
Stuttgart, 1995; Vol. E6a, pp. 451.
3. Valencia, E.; Freyer, A. J.; Shamma, M.; Fajardo, V.
Tetrahedron Lett. 1984, 25, 599.
4. Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3, 3923.
5. Fajardo, V.; Elango, V.; Cassels, B. K.; Shamma, M.
Tetrahedron Lett. 1982, 23, 39.
6. Danishefsky, S. J.; Fang, F. G. Tetrahedron Lett. 1989,
30, 2747.
Data for 11: Mp=178–179°C; Found: M+ 295.1581;
C19H21NO2 requires M, 295.1572 (Found: C 76.94%, H
7.26%, N 4.74%; calc. C 77.26%, H 7.17%, N 4.74%); m/z
(CI) 296 (M+H+, 100%), 295 (M+, 40%), 280 (M+−CH3,
40%); lH (300 MHz, CDCl3) 7.4–7.2 (6H, m, ArH), 6.82
(1H, d, J 8, ArH), 6.62 (1H, d, J 7.5, ArH), 5.62 (1H, s,
CH), 3.99 (3H, s, CH3O), 1.47 (9H, s, tert-butyl); lC (75
MHz, CDCl3) 172.2, 156.8, 149.3, 132.9, 128.9, 128.0,
127.7, 126.4, 126.1, 114.6, 109.5, 103.8, 64.2, 55.8, 55.7,
28.4; wmax(film)/cm−1 1683 (CꢀO).
7. Wood, J. L.; Stoltz, B. M.; Goodman, P. N. J. Am.
Chem. Soc. 1996, 118, 10656.
8. Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau, C.;
Rys, V. Tetrahedron Lett. 2002, 43, 2207.
9. Lawrence, N. J.; Liddle, J.; Bushell, S. M.; Page, M. I.;
Slawin, A. M. Z. J. Org. Chem. 2002, 67, 457.
10. Linder, M.; Hadler, D.; Hofmann, S. Human Psy-
chopharm. 1997, 12, 445.
Data for (−)-18: [h]D22=−32 (c=1.38 in CHCl3). Mp=
143–145°C. Found: M+ 295.1570; C19H21NO2 requires M,
295.1571; m/z (EI) 295 (M+, 80%), 280 (M−Me, 100%),
237 (50%); lH (300 MHz, CDCl3) 7.78 (1H, d, J 8.5, H7),
7.3 (5H, m, PhH), 6.95 (1H, dd, J 8.5, 2, H6), 6.51 (1H,
d, J 2.5, H4), 3.78 (3H, s, MeO), 3.35 (1H, sept, J 7,
CH(CH3)2), 1.92 (3H, s, CH3), 1.50 (3H, d, J 7, CH3CH),
1.28 (3H, d, J 7, CH3CH); lC (75 MHz, CDCl3) 167.8,
162.8, 154.1, 140.2, 128.3, 127.8, 126.8, 124.6, 124.5,
114.3, 106.5, 67.7, 55.4, 45.5, 23.1, 20.7, 19.7; wmax(film)/
cm−1 1678 (CꢀO), 1609 (Ar).
11. Ahmed, A.; Clayden, J.; Rowley, M. Chem. Commun.
1998, 297.
12. Ahmed, A.; Clayden, J.; Yasin, S. A. Chem. Commun.
1999, 231.
13. Clayden, J.; Tchabanenko, K.; Yasin, S. A.; Turnbull, M.
D. Synlett 2001, 302.
14. Clayden, J.; Menet, C. J.; Mansfield, D. J. Org. Lett.
2000, 2, 4229.
15. Some nucleophilic additions to aromatic rings unavoid-
ably yield aromatic products by rearomatisation (see
Clayden, J.; Kenworthy, M. N. Org. Lett. 2002, 4, 787
and references cited therein). By contrast we have found
the partially saturated products of our dearomatising
cyclisations to be surprisingly resistant to rearomatisation
(Ref. 14).
Data for 23: Found: M+ 315.1624; C22H21NO requires M,
315.1623; m/z (CI) 316 (M+H+, 100%), 315 (M+, 60%);
lH (300 MHz, CDCl3) 8.67 (1H, d, J 8.5, ArH), 7.83 (1H,
d, J 9, ArH), 7.63 (1H, d, J 8, ArH), 7.5–7.4 (2H, m,
ArH), 7.4–7.1 (6H, m, ArH), 4.75 (1H, s, CH), 1.42 (9H,
s, tert-butyl); lC (75 MHz, CDCl3) 197.8, 164.0, 138.1,
138.0, 131.1, 129.7, 128.9, 127.9, 127.6, 126.9, 126.2,
123.6, 122.7, 114.5, 71.5, 56.3, 29.6; wmax(film)/cm−1 1677
(CꢀO).
16. Clayden, J.; Tchabanenko, K. Chem. Commun. 2000, 317.
17. Ahmed, A.; Bragg, R. A.; Clayden, J.; Tchabanenko, K.