and should be generally applicable since allylic alcohols can
be readily prepared in optically enriched form by several
asymmetric syntheses.1,7,8 Herein, we wish to report a general
synthetic method allowing a highly diastereoselective anti
SN2′ substitution in open-chain systems using functionalized
zinc-copper reagents.9
Allylic substrates of type 1 can undergo anti SN2′ substitu-
tion via two conformations (1A and 1B), either of them
allowing an anti parallel arrangement of the copper reagent
and the leaving group (Scheme 1). The substitution via
reagents do not react with allylic acetates or benzoates, but
a high-yield substitution is obtained with allylic pentafluo-
robenzoates that are readily prepared from the corresponding
alcohols (C6F5COCl, pyridine, DMAP, CH2Cl2, 0 °C, 1-4
h). Thus, the reaction of the (E)-allylic pentafluorobenzoate
((E)-4, >99% (E)-; 94% ee)11 with Pent2Zn and CuCN‚
2LiCl12 in a 2:1 THF/NMP mixture at -10 °C for 2.5 h
produces the expected (S)-(E)-7-methyl-5-dodecene ((E)-5)
in 83% yield with an enantiomeric excess of 90% ee as well
as ca. 9% yield of (Z)-7-methyl-5-dodecene ((Z)-5). The
absolute stereochemistry of (S)-(E)-5 was established by
ozonolytic cleavage and in situ Jones oxidation providing
(S)-2-methylheptanoic acid.13
Scheme 1
This demonstrates unambiguously that zinc-copper re-
agents react with anti selectivity. The absolute configuration
of the minor product (R)-(Z)-5 was not established, but an
independent synthesis14 indicates that its structure was indeed
the (Z)-alkene-5.15 The formation of (Z)-5 results from an
anti substitution of the zinc-copper reagent via a conforma-
tion of type 1B (Scheme 1). By comparing the allylic 1,3-
strain16 of the two possible conformations (1A and 1B) that
can undergo an anti SN2′ substitution, we noticed a higher
allylic 1,3-strain (between H1 and R1) in conformer 1B
(Scheme 2) disfavoring the substitution reaction via this
conformer 1A would afford the trans-alkene substitution;
reaction via the conformer 1B would result in the formation
of cis-alkene (cis-3).
Scheme 2
Notice that the configuration at the carbon atom C(1) is
the opposite in products trans-2 and cis-3 (Scheme 1). Allylic
substitutions with zinc-copper reagents were known with
allylic halides,9,10 but we needed to perform this study with
allylic alcohol derivatives, since these molecules can be
readily obtained in optically enriched form contrary to allylic
halides. Preliminary experiments show that zinc-copper
(5) (a) Belelie, J. L.; Chong, J. M. J. Org. Chem. 2001, 66, 5552. (b)
Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.;
Yamamoto, Y. J. Org. Chem. 1991, 56, 4370. (c) Yamamoto, Y.; Tanaka,
M.; Ibuka, T.; Chounan, Y. J. Org. Chem. 1992, 57, 1024. (d) Marino, J.
P.; Viso, A.; Lee, J.-D.; Fernandez de la Pradilla, R.; Fernandez, P.; Rubio,
M. B. J. Org. Chem. 1997, 62, 645. (e) Smitrovich, J. H.; Woerpel, K. A.
J. Org. Chem. 2000, 65, 1601. (f) Spino, C.; Beaulieu, C. J. Am. Chem.
Soc. 1998, 120, 11832. (g) Spino, C.; Beaulieu, C.; Lafreniere, J. J. Org.
Chem. 2000, 65, 7091.
(6) (a) van Klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D.
M.; Ba¨ckvall, J.-E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059. (b)
Karlstro¨m, A. S. E.; Huerta, F. F.; Meuzelaar, G. J.; Ba¨ckvall, J.-E. Synlett
2001, 923. (c) Meuzelaar, G. J.; Karlstro¨m, A. S. E.; van Klaveren, M.;
Persson, E. S. M.; del Villar, A.; van Koten, G.; Ba¨ckvall, J.-E. Tetrahedron
2000, 56, 2895. (d) Du¨bner, F.; Knochel, P. Angew. Chem. 1999, 111, 391;
Angew. Chem., Int. Ed. 1999, 38, 379. (e) Du¨bner, F.; Knochel, P.
Tetrahedron Lett. 2000, 41, 9233. (f) Alexakis, A.; Malan, C.; Lea, L.;
Benhaim, C.; Fournioux, X. Synlett 2001, 927. (g) Alexakis, A.; Croset, K.
Org. Lett. 2002, 4, 4147. (h) Malda, H.; van Zijl, A. W.; Arnold, L. A.;
Feringa, B. L. Org. Lett. 2001, 3, 1169. (i) Luchaco-Cullis, C. A.; Mizutani,
H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem. 2001, 113, 1504; Angew.
Chem., Int. Ed. 2001, 40, 1456.
conformer. To disfavor this conformation further, we have
envisioned using the (Z)-allylic pentafluorobenzoate (Z)-4.
With such a substrate, the disfavored conformation of type
1C will now display considerable allylic 1,3-strain.16 This
was confirmed by experiments. The allylic pentafluoroben-
zoate (Z)-4 (95% ee) reacted smoothly with Pent2Zn in the
(11) The allylic alcohol derived from trans-4 was prepared by a Sharpless
kinetic resolution; see ref 8 and Supporting Information.
(12) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.
1988, 53, 2390.
(7) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley: New
York, 1994.
(8) (a) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S.
Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. (b) Carlier, P. R.;
Mungall, W. S.; Schro¨der, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988,
110, 2978.
(9) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org. React.
2001, 58, 417.
(10) Sekiya, K.; Nakamura, E. Tetrahedron Lett. 1988, 29, 5155.
(13) Skuballa, W.; Schillinger, E.; Stu¨rzebecher, C.-St.; Vorbru¨ggen, H.
J. Med. Chem. 1986, 313.
(14) (Z)-allylic alcohol ((Z)-5; (5Z)-7-methyl-5-dodecene) was prepared
by Lindlar reduction of the corresponding alkyne (7-methyl-5-dodecyne);
see Supporting Information.
(15) Assuming that an anti substitution via the conformer 1B will lead
to the (R)-configuration for (Z)-5. Since only 9% of this isomer was formed,
it was not possible to establish its enantiomeric purity by GC analysis.
(16) Hoffmann, R. W. Chem. ReV. 1989, 89, 1841.
2112
Org. Lett., Vol. 5, No. 12, 2003