T. Yamaguchi et al. / Tetrahedron Letters 47 (2006) 3755–3757
3757
´
Res. 2003, 63, 7392–7399; (d) Tardy, C.; Facompre, M.;
of Pd(PPh3)4 and aqueous Na2CO3 in refluxing THF to
give mono-arylated pyrrole 10 in 80% yield. The second
cross-coupling of this product with 2.0 equiv of 1113
using 8 mol % of Pd(PPh3)4 produced 3,4-disubstituted
pyrrole 12 in 90% yield. Deprotection of the MOM
group of 12 with HCl in methanol caused concomitant
lactonization to give 13 in 93% yield. Alkaline hydrolysis
of 13 followed by treatment with p-TsOH in refluxing
dichloromethane gave acid 14 in 77% yield. Decarboxyl-
ation of this compound in hot quinoline in the presence
of Cu2O provided 15 in 96% yield.14 Intramolecular oxi-
dative biaryl coupling of 15 under Kita’s conditions15
[phenyliodine bis(trifluoroacetate) (PIFA)/BF3ÆEt2O]
proceeded cleanly to produce cyclized compound 16 in
95% yield. Dehydrogenation of this compound with
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) gave
20-benzyl-13-isopropyllamellarin a (4) in 99% yield.
Deprotection of the benzyl group by hydrogenolysis over
palladium on charcoal afforded 17, which was reacted
with trichloroethyl chlorosulfate in pyridine to give
mixed sulfate 18 in 96% yield.6 Selective removal of the
isopropyl protecting group of 18 with boron trichloride16
proceeded cleanly without affecting the trichloroethylsul-
fate moiety to give 19 in 96% yield. Final reductive
deprotection of the trichloroethyl ester with Zn/
HCO2NH4 followed by ion exchange over Amberlite
IRC-50 (Na+ form) and Sephadex purification produced
lamellarin a 20-sulfate (1) in 80% yield.
´
Laine, W.; Baldeyrou, B.; Garcıa-Gravalos, D.; Fran-
cesch, A.; Mateo, C.; Pastor, A.; Jimenez, J. A.; Man-
zanares, I.; Cuevas, C.; Bailly, C. Bioorg. Med. Chem.
2004, 12, 1697–1712; (e) Marco, E.; Laine, W.; Tardy, C.;
Lansiaux, A.; Iwao, M.; Ishibashi, F.; Bailly, C.; Gago, F.
J. Med. Chem. 2005, 48, 3796–3807.
´
4. Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S.
T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.;
Faulkner, D. J. J. Med. Chem. 1999, 42, 1901–1907.
5. Ridley, C. P.; Reddy, M. V. R.; Rocha, G.; Bushman, F.
D.; Faulkner, D. J. Bioorg. Med. Chem. 2002, 10, 3285–
3290.
6. Banwell, M.; Flynn, B.; Hockless, D. Chem. Commun.
1997, 2259–2260.
7. Liu, Y.; Lien, I. F.; Ruttgaizer, S.; Dove, P.; Taylor, S. D.
Org. Lett. 2004, 6, 209–212.
8. During the course of our synthesis of lamellarin a 20-
sulfate (1), Furstner completed the total synthesis of the
marine alkaloid dictyodendrin B, in which Taylor’s
protocol was successfully used for the final sulfate
¨
formation, see: Furstner, A.; Domostoj, M. M.; Scheiper,
¨
B. J. Am. Chem. Soc. 2005, 127, 11620–11621.
9. Iwao, M.; Takeuchi, T.; Fujikawa, N.; Fukuda, T.;
Ishibashi, F. Tetrahedron Lett. 2003, 44, 4443–4446.
10. Fujikawa, N.; Ohta, T.; Yamaguchi, T.; Fukuda, T.;
Ishibashi, F.; Iwao, M. Tetrahedron 2006, 62, 594–604.
11. Merz, A.; Schropp, R.; Do¨tterl, E. Synthesis 1995, 795–
800.
12. Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58,
2201–2208.
13. The boronic acid 11 was prepared from O-benzylisovanil-
lin in a similar manner as described for the synthesis of 4-
isopropoxy-5-methoxy-2-methoxymethoxyphenylboronic
acid. See Ref. 10.
The spectroscopic data of synthetic 117 were shown to be
identical with those reported for the natural product.4 It
1
is noteworthy that the H NMR absorptions of aro-
14. Boger, D. L.; Soenen, D. R.; Boyce, C. W.; Hedrick, M.
P.; Jin, Q. J. Org. Chem. 2000, 65, 2479–2483.
15. (a) Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.;
Tohma, H.; Kita, Y. J. Org. Chem. 1998, 63, 7698–7706;
(b) Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.;
Kita, Y. Tetrahedron 2001, 57, 345–352; (c) Hamamoto,
H.; Anilkumar, G.; Tohma, H.; Kita, Y. Chem. Eur. J.
2002, 8, 5377–5383.
matic (H-5, 6, 7, 15, 16) and hydroxylic protons of 1
shift considerably depending on the concentration of
1
the samples.17 The H NMR data of synthetic 1 ob-
tained at the low concentration (1.0 mg of 1 in 0.7 mL
of DMSO-d6) were found to be identical with those
reported for the natural product.
In conclusion, we have achieved the first total synthesis
of lamellarin a 20-sulfate (1) in 14 steps from the com-
mercially available 2-(3,4-dimethoxyphenyl)ethylamine
(4) in excellent overall yield (24%). This synthesis opens
the way to produce diverse sulfated lamellarins, which
enable us to undertake the structure–activity relationship
studies on integrase-inhibiting and anti-HIV activities.
Studies along this line are in progress in our laboratories.
16. (a) Sala, T.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1
´
´
1979, 2593–2598; (b) Solladie, G.; Pasturel-Jacope, Y.;
Maignan, J. Tetrahedron 2003, 59, 3315–3321.
17. Lamellarin a 20-sulfate (1). Mp 263–269 °C (dec) (sealed
capillary) (lit.4 mp 145–148 °C); IR (KBr): 3448, 1695,
1
1487, 1419, 1272, 1223, 1167, 1048, 839 cmꢀ1; H NMR
(400 MHz, 17 mg of 1 in 0.7 mL of DMSO-d6): d 3.37 (s,
3H), 3.37 (s, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 6.80 (s, 1H),
6.94 (dd, J = 2.0 and 8.0 Hz, 1H), 7.05 (d, J = 2.0 Hz,
1H), 7.18 (s, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.29 (d,
J = 7.4 Hz, 1H), 7.38 (s, 1H), 7.57 (s, 1H), 8.48 (br s, 1H),
9.03 (d, J = 7.4 Hz, 1H); 1H NMR (400 MHz, 1.0 mg of 1
in 0.7 mL of DMSO-d6): d 3.38 (s, 3H), 3.38 (s, 3H), 3.87
(s, 3H), 3.89 (s, 3H), 6.81 (s, 1H), 7.03 (d, J = 2.0 Hz, 1H),
7.04 (dd, J = 2.0 and 8.0 Hz, 1H), 7.21 (s, 1H), 7.26 (d,
J = 8.0 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.44 (s, 1H),
7.56 (s, 1H), 9.09 (d, J = 7.4 Hz, 1H), 9.45 (br s, 1H); 13C
NMR (100 MHz, 17 mg of 1 in 0.7 mL of DMSO-d6): d
54.36, 54.96, 55.48, 55.97, 104.63, 105.64, 106.80, 108.00,
108.66, 111.13, 111.40, 112.70, 113.42, 118.00, 118.05,
121.36, 121.88, 124.09, 126.83, 127.80, 133.26, 143.00,
144.93, 146.48, 147.87, 147.99, 148.71, 149.71, 153.96.
HRFABMS (positive ion mode) m/z. Calcd for
References and notes
1. For a review of HIV-1 integrase inhibitors, see: Maurin,
C.; Bailly, F.; Cotelle, P. Curr. Med. Chem. 2003, 10,
1795–1810.
2. For reviews of lamellarin alkaloids, see: (a) Cironi, P.;
´
Albericio, F.; Alvarez, M. Prog. Heterocycl. Chem. 2004,
16, 1–26; (b) Bailly, C. Curr. Med. Chem. Anti-Cancer
Agents 2004, 4, 363–378; (c) Handy, S. T.; Zhang, Y. Org.
Prep. Proced. Int. 2005, 37, 411–445.
3. (a) Quesada, A. R.; Gravalos, M. D. G.; Puentes, J. L. F.
Br. J. Cancer 1996, 74, 677–682; (b) Ishibashi, F.; Tanabe,
S.; Oda, T.; Iwao, M. J. Nat. Prod. 2002, 65, 500–504; (c)
C29H22NNa2O11S
[(M+Na)+]:
638.0709.
Found:
´
Facompre, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.;
638.0710. HRFABMS (negative ion mode) m/z. Calcd
Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Cancer
for C29H22NO11S [(M–Na)ꢀ]: 592.0914. Found: 592.0913.