J ohnson et al.
TABLE 3. Rela tive Ra tes a n d Activa tion P a r a m eter s
rel rate of methoxide Ea
∆Hq ∆Sq
methoxide, all staggered and eclipsed conformers of the
tetrahedral intermediate formed by the AN + DN mech-
anism, transition states for elimination of fluoride ion,
and products. These structures are graphically repre-
sented in Chart 2.
q
compd substitution at 44.60 °C (kcal/mol) (kcal/mol) (eu)
1Ze
227
59.6
2.84
3.26
74.8
12.1
1.02
1.00
2.84
1.97
15.7
17.0
13.4
16.3
18
-17
1Ee
1Za 27
1Ea 27
1Zh
1Eh
1Zb
1Eb
1Zd
1Ed
-9.9
-10
In these calculations, the phenyl group has been
replaced by a hydrogen for computational expediency and
will be referred to as the “simplified system.” The phenyl
group was included in certain structures to better define
the reaction coordinate in calculations that will be
discussed later. The Cartesian coordinates and total
energies for all structures are included in the Supporting
Information. Calculations were performed using Gauss-
ian 9436 and Gaussian 9837 at the HF/6-31+G(d), MP2/
6-31+G(d)//HF/6-31+G(d), and B3LYP/6-31+G(d)//HF/
6-31+G(d) levels of theory.38,39 In addition, to account for
solvent polarity effects, single-point calculations per-
formed using the self-consistent iterative polarizable
continuum method (SCIPCM)40 on the geometry opti-
mized at the HF/6-31+G(d) level with a dielectric con-
stant (∈ ) 47.0) to reflect that of dimethyl sulfoxide
[HF(scrf)/6-31+G(d), and B3LYP(scrf)/6-31+G(D)//HF/
6-31+G(d)] were also performed. All calculations include
a single methanol molecule to mimic minimal immediate
solvation effects and to stabilize the intermediate struc-
tures. The data for these calculations are also included
in the Supporting Information. Qualitatively, there is
little difference between the reaction coordinates derived
from the different computational levels. Therefore, all
discussion referring to the simplified system will refer
to calculations done at the HF/6-31+G(d) level keeping
in mind that other theory levels provide the same picture
of the reaction.
15.1
17.0
20.7
19.5
20.5
20.2
14.5
16.2
20.4
19.9
19.9
18.9
-15
-14
-5.0
-9.2
-4.7
-8.5
F IGURE 1. Hammett plots (σ) for methoxide substitution of
1Ze-i and 1Ee-I in 90:10 DMSO-MeOH at 26.06 °C. Note:
For illustrative purposes, the 1E plot is ofset by the addition
of one log unit to the log (k/ko) values.
Nucleophilic attack of methoxide ion on O-methylhy-
droximoyl fluoride (the simplified system) would form a
tetrahedral intermediate with single bond character
between carbon and nitrogen. There are three staggered
Interestingly, the hydroximoyl bromides in all in-
stances react approximately 2-3 times faster than the
hydroximoyl chlorides. Ab initio molecular orbital calcu-
lations have indicated that stabilization of a carbon-
carbon double bond by chloride exceeds that by bromide.35
This might also be true of the carbon-nitrogen double
bond, and the difference in rates between the bromide
and chloride may reflect a greater stabilization of the
double bond of the starting material in the hydroximoyl
chloride relative to the hydroximoyl bromide.
(36) Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
J ohnson, B. G.; Robb, M. A.; Cheeseman, J . R.; Keith, T. A.; Petersson,
G. A.; Montgomery, J . A.; Raghavachari, K.; Al-Laham, M. A.;
Zakzewski, V. G.; Ortiz, J . V.; Foresman, J . B.; Cioslowski, J .; Stefanov,
B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.;
Chen, W.; Wong, M. W.; Andres, J . L.; Repogle, E. S.; Gomperts, R.;
Martin, R. L.; Fox, D. J .; Binkley, J . S.; Degrees, D. J .; Baker, J .; Head-
Gordon, S. M.; Gonzalez, C.; Pople, J . A. Gaussian 94, Revision D.3;
Gaussian: Pittsburgh, PA, 1996.
A positive correlation with Hammett σ values, a
measured negative entropy of activation, and an element
effect study that shows rate trends of F . Cl or Br for
the reaction of O-methylbenzohydroximoyl halides with
methoxide in 90:10 DMSO/methanol all support the
proposed addition-elimination mechanism. Although we
previously28 have given possible explanations for the
stereospecificity of these reactions, it seemed worthwhile
to try to obtain a better understanding of these reactions
through theoretical calculations.
(37) Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J . R.; Zakzewski, V. G.; Montgomery, J . A.,
J r.; Stratmann, R. E.; Burant, J . C.; Dappich, S.; Millam, J . M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J .; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J .; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morojuma,
K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J . B.;
Cioslowski, J .; Ortiz, J . V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J .; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; J ohnson, B.; Chen, W.; Wong, M. W.;
Andres, J . L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople,
J . A. Gaussian 98, Revision A.9; Gaussian: Pittsburgh, PA, 1998.
(38) Hehre, W. J .; Radom, L.; Schleyer, P. v. R.; Pople, J . A. Ab Initio
Molecular Orbital Theory; Wiley-Interscience: New York, 1986; and
references therein.
Ab initio calculations were performed on starting
materials, transition states for nucleophilic attack by
(39) (a) Kohn, W.; Becke, A. D.; Parr, R. G. J . Phys. Chem. 1996,
100, 12974-12979. (b) Parr, R. G.; Yang, W. Density Functional Theory
of Atoms and Molecules; Oxford University Press: New York, 1989.
(c) Dreizler, R. M.; Gross, E. K. V. Density Functional Theory; Springer,
Berlin, 1990. (d) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3105. (e)
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-790.
(40) (a) Forseman, J . B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J .;
Frisch, J . J . Phys. Chem. 1996, 100, 16098-16102. (b) Tomasi, J .;
Bonaccorsi, R.; Cammi, R.; Valle, F. J . O. THEOCHEM 1991, 234,
401-402.
(31) Marchese, G.; Naso, F.; Modena, G. J . Chem. Soc. B 1969, 290-
293.
(32) Silversmith, E. F.; Smith, D. J . Org. Chem. 1958, 23, 427-430.
(33) Ta-Shma, R.; Rappoport, A. J . Am. Chem. Soc. 1977, 99, 1845-
1858.
(34) Hegarty, A. F.; McCormack, M. T.; Hathaway, B. J .; Hulett, L.
J . Chem. Soc., Perkin Trans. 2 1977, 1136-1141.
(35) Hoz, S.; Basch, H.; Wolk, J . L.; Rappoport, Z.; Goldberg, M. J .
Org. Chem. 1991, 56, 5424-5426.
2744 J . Org. Chem., Vol. 69, No. 8, 2004