Communications
Liu,P. Lecavalier,C. Wu,Y. X. Shen, J. Am. Chem. Soc. 1995,
117,852 – 874; d) C. Heim,A. Affeld,M. Nieger,F. Vögtle, Helv.
Chim. Acta 1999, 82,746 – 759.
change with temperature,within experimental error
(although there seems to be a very minor trend to higher
KIE values at higher temperatures for rotaxanes 10a,b). Thus,
DDH° must be close to zero. A more precise evaluation of the
DDH° and DDS° values would require a larger temperature
range,which is not possible for technical reasons. Conse-
quently,we refrain from such a deconvolution of our data and
for the time being restrict ourselves to the following semi-
quantitative discussion: If DDH° is approximately 0 Jmolꢀ1,
the isotope effects are mostly entropic in nature with
DDS° values of about ꢀ0.8 JKꢀ1 molꢀ1 for 9a,b and about
ꢀ0.6 JKꢀ1 molꢀ1 for 10a,b. These results can be understood in
terms of the vibrational freedom in the transition structures of
the deslipping reactions. The larger vibrational amplitude of
[4] For a review on isotope effects on noncovalent interactions,see
D. Wade, Chem.-Biol. Interact. 1999, 117,191 – 217.
[5] a) K. Kuchitsu,L. S. Bartell, J. Chem. Phys. 1962, 36,2470 – 2481;
b) P. Pulay,W. Meyer,J. E. Boggs, J. Chem. Phys. 1978, 68,5077 –
5085.
[6] D. J. Lacks, J. Chem. Phys. 1995, 103,5085 – 5090.
[7] a) L. Melander,R. E. Carter, J. Am. Chem. Soc. 1964, 86,295 –
296; b) K. Mislow,R. Graewe,A. J. Gordon,G. H. Wahl,Jr.,
Am. Chem. Soc. 1964, 86,1733 – 1741; c) C. Heitner,K. T.
Leffek, Can. J. Chem. 1966, 44,2567 – 2570; d) R. E. Carter,L.
Melander, Adv. Phys. Org. Chem. 1973, 10,1 – 27.
J.
[8] S. A. Sherrod,R. L. da Costa,R. A. Barnes,V. Boekelheide, J.
Am. Chem. Soc. 1974, 96,1565 – 1577.
[9] a) H. C. Brown,G. J. McDonald, J. Am. Chem. Soc. 1966, 88,
2514 – 2519; b) H. C. Brown,M. E. Azzaro,J. G. Koelling,G. J.
McDonald, J. Am. Chem. Soc. 1966, 88,2520 – 2525; see also:
ꢀ
the C H bonds means that the vibrations of the nonlabeled
stoppers suffer from tighter restrictions upon passage through
the wheel than those of the deuterated stopper which benefits
´
c) W. Gałe¸zowski,I. Grzes kowiak,A. Jarczewski, J. Chem. Soc.
ꢀ
here from the lower vibrational amplitude of the C D bonds.
Perkin Trans. 2 1998,1607 – 1611.
Larger vibrational freedom is expressed in a slightly higher
and,thus more beneficial,activation entropy for the deslip-
ping reaction of the deuterated rotaxane. This effect is much
less pronounced in the local minima of the rotaxanes on the
potential energy surface,since the stoppers are located
remote from the wheel.
[10] N. E. Heimer,D. L. Mattern, J. Am. Chem. Soc. 1993, 115,2217 –
2220.
[11] a) F. A. L. Anet,A. H. Dekmezian, J. Am. Chem. Soc. 1979, 101,
5449 – 5451; b) J. Abildgaard,S. Bolvig,P. E. Hansen, J. Am.
Chem. Soc. 1998, 120,9063 – 9069; b) K. Ibrom,G. Kohn (nØ
Wentzel),K.-U. Boeckmann,R. Kraft,P. Holba-Schultz,L.
Ernst, Org. Lett. 2000, 2,4111 – 4113.
In conclusion,the deslipping reaction of a rotaxane is very
sensitive,even to extremely small changes in the molecular
architecture and the steric demand of its components—
despite their large size,their complex molecular structure,
and the high flexibility of the mechanical bond. The present
work provides a novel supramolecular and highly precise
approach to the classical problem of determining and
comparing steric demand. The fact that the two “reaction
partners”,that is,the axle and the wheel,are already
independent molecules and only mechanically interlocked
before the reaction excludes all isotope effects arising from
hyperconjugative or inductive effects which have been
intensely discussed in earlier work[15] and were not always
easy to distinguish from steric isotope effects.
[12] A. W. Burgstahler,P.-L. Chien,M. O. Abdel-Rahman, J. Am.
Chem. Soc. 1964, 86,5281 – 5290.
[13] a) G. M. Hübner,J. Gläser,C. Seel,F. Vögtle,
Angew. Chem.
1999, 111,395 – 398; Angew. Chem. Int. Ed. 1999, 38,383 – 386;
b) C. A. Schalley,G. Silva,C. F. Nising,P. Linnartz, Helv. Chim.
Acta 2002, 85,1578 – 1596; c) P. Ghosh,O. Mermagen,C. A.
Schalley, Chem. Commun. 2002,2628 – 2629.
[14] a) L. Melander,R. E. Carter, Acta Chem. Scand. 1964, 18,1138 –
1149; b) R. E. Carter,L. Dahlgren, Acta Chem. Scand. 1969, 23,
504 – 514; c) R. E. Carter,L. Dahlgren, Acta Chem. Scand. 1970,
24,633 – 643.
[15] a) V. J. Shiner,Jr., J. Am. Chem. Soc. 1956, 78,2653 – 2654;
b) V. J. Shiner,Jr., J. Am. Chem. Soc. 1960, 82,2655 – 2656; c) K.
Mislow,R. E. O'Brien,H. Schaefer, J. Am. Chem. Soc. 1960, 82,
5512 – 5513; d) G. J. Karabatsos,G. C. Sonnichsen,C. G.
Papaioannou,S. E. Scheppele,R. L. Shone, J. Am. Chem. Soc.
1967, 89,463 – 465; e) A. J. Kresge,R. J. Preto, J. Am. Chem. Soc.
1967, 89,5510 – 5511.
Received: January 7,2003 [Z50903]
Keywords: isotope effects · kinetics · reaction mechanisms ·
.
rotaxanes · supramolecular chemistry
[1] a) P. R. Ashton,I. Baxter,M. C. T. Fyfe,F. M. Raymo,N.
Spencer,J. F. Stoddart,A. J. P. White,D. J. Williams,
Chem. Soc. 1998, 120,2297 – 2307; b) F. M. Raymo,K. N. Houk,
J. F. Stoddart, J. Am. Chem. Soc. 1998, 120,9318 – 9322; c) for a
review,see “Slippage and Constrictive Binding”: M. C. T. Fyfe,
F. M. Raymo,J. F. Stoddart in StimulatingConcepts in Chemistry
(Eds.: F. Vögtle,J. F. Stoddart,M. Shibasaki),Wiley-VCH,
Weinheim, 2000.
J. Am.
[2] a) G. Schill, Catenanes, Rotaxanes and Knots,Academic Press,
New York, 1971; b) Molecular Catenanes, Rotaxanes, and Knots
(Eds.: J.-P. Sauvage,C. Dietrich-Buchecker),Wiley-VCH,Wein-
heim, 1999.
[3] a) A. Affeld,G. M. Hübner,C. Seel,C. A. Schalley, Eur. J. Org.
Chem. 2001,2877; see also: b) G. Hübner,G. Nachtsheim,Q.-Y.
Li,C. Seel,F. Vögtle, Angew. Chem. 2000, 112,1315 – 1318;
Angew. Chem. Int. Ed. 2000, 39,1269 – 1272; c) H. W. Gibson,S.
2260
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 2258 – 2260