10.1002/anie.201706682
Angewandte Chemie International Edition
COMMUNICATION
[7]
(a) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G., Angew. Chem. Int.
Ed. 2008, 47, 6138; (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List,
B., Chem. Rev. 2007, 107, 5471; (c) MacMillan, D. W. C., Nature 2008,
455, 304; (d) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov,
K. S.; Jørgensen, K. A., Angew. Chem. Int. Ed. 2015, 54, 13860; (e) Fu,
G. C., Acc. Chem. Res. 2004, 37, 542; (f) Murphy, J. J.; Silvi, M.;
Melchiorre, P., Enamine-Mediated Catalysis (nꢀ→ꢀπ*). In Lewis Base
Catalysis in Organic Synthesis, Wiley-VCH Verlag, 2016, pp 857-902; (g)
Miller, S. J., Acc. Chem. Res. 2004, 37, 601.
heterocyclic pyrrolidines with evident potential to answer
fundamental questions in catalysis, thus inviting for further
exploration of these scaffolds. The availability of olefins, amines
and aldehydes of artificial and natural origin ensures the utility of
this method to access new molecules that are empowered by the
privileged pyrrolidine core.
[8]
(a) Mendoza, A.; Otero-Fraga, J.; Montesinos-Magraner, M., Synthesis
2017, 49, 802; (b) Hashimoto, T.; Maruoka, K., Chem. Rev. 2015, 115,
5366; (c) Adrio, J.; Carretero, J. C., Chem. Commun. 2014, 50, 12434;
(d) Narayan, R.; Potowski, M.; Jia, Z.-J.; Antonchick, A. P.; Waldmann,
H., Acc. Chem. Res. 2014, 47, 1296; (e) Wang, L. J.; Tang, Y.,
Intermolecular 1,3-Dipolar Cycloadditions of Alkenes, Alkynes, and
Allenes. In Comprehensive Organic Synthesis II (Second Edition),
Elsevier, 2014, pp 1342-1383; (f) Adrio, J.; Carretero, J. C., Chem.
Commun. 2011, 47, 6784; (g) Pandey, G.; Banerjee, P.; Gadre, S. R.,
Chem. Rev. 2006, 106, 4484; (h) Nájera, C.; Sansano, J. M., Angew.
Chem. Int. Ed. 2005, 44, 6272; (i) Pascual-Escudero, A.; de Cózar, A.;
Cossío, F. P.; Adrio, J.; Carretero, J. C., Angew. Chem. Int. Ed. 2016, 55,
15334.
Acknowledgements
Unrestricted support from Prof. F. Rodríguez (U. Oviedo), the
personnel of the Dept. of Organic Chemistry, the Dept. of
Materials and Environmental Chemistry (SU) and AstraZeneca
Göteborg is deeply appreciated. Financial support for this work
was kindly provided by the European Research Council (StG -
714737), the Knut and Alice Wallenberg Foundation
(KAW2016.0153),
the
Swedish
Research
Council
(Vetenskapsrådet, 2012-2969), the Swedish Innovation Agency
(VINNOVA-EXSELENT), the Marie Curie Actions (631159), and
AstraZeneca AB. Fellowships from the Carl Trygger Foundation
(JO; CTS15-326), the Wenner Gren Foundation (MMM;
UPD2016-0301) and the Erasmus+ program (DR) are greatly
appreciated.
[9]
For [3+2] cycloadditions with heterocyclic imines, see: (a) Ponce, A.;
Alonso, I.; Adrio, J.; Carretero, J. C., Chem. Eur. J. 2016, 22, 4952; (b)
Padilla, S.; Tejero, R.; Adrio, J.; Carretero, J. C., Org. Lett. 2010, 12,
5608.
[10] Carretero and Cossío have reported [3+2] cycloadditions with electron-
deficient styrenes, but styrene itself has been declared unreactive.8i In
the seminal study by Kauffmann, the cycloaddition with cis-stilbene only
proceeded in 21% yield using lithium 2-aza-allyl anions.12b
Keywords: cycloaddition • aluminum • nitrogen heterocycles •
C-C coupling • alkenes
[11] If desired, the excess of Me3Al and the olefin could be reduced to 1 and
2 equiv. respectively with only a minor erosion of efficiency (Table S1).
However, in this study a higher excess was used due to the inexpensive
nature of these materials.
[1]
(a) Mendoza, A.; Colas, K.; Suárez-Pantiga, S.; Götz, D. C. G.;
Johansson, M. J., Synlett 2016, 27, 1753; For a selection of recent
contributions, see: (b) Suárez-Pantiga, S.; Colas, K.; Johansson, M. J.;
Mendoza, A., Angew. Chem. Int. Ed. 2015, 54, 14094; (c) González-
Fernández, E.; Nicholls, L. D. M.; Schaaf, L. D.; Farès, C.; Lehmann, C.
W.; Alcarazo, M., J. Am. Chem. Soc. 2017, 139, 1428; (d) Ramírez-
López, P.; Ros, A.; Romero-Arenas, A.; Iglesias-Sigüenza, J.; Fernández,
R.; Lassaletta, J. M., J. Am. Chem. Soc. 2016, 138, 12053; (e) Narute,
S.; Parnes, R.; Toste, F. D.; Pappo, D., J. Am. Chem. Soc. 2016, 138,
16553; (f) Sako, M.; Takeuchi, Y.; Tsujihara, T.; Kodera, J.; Kawano, T.;
Takizawa, S.; Sasai, H., J. Am. Chem. Soc. 2016, 138, 11481; (g) Gao,
D.-W.; Gu, Q.; You, S.-L., J. Am. Chem. Soc. 2016, 138, 2544; (h) Beaud,
R.; Phipps, R. J.; Gaunt, M. J., J. Am. Chem. Soc. 2016, 138, 13183; (i)
Li, S.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B., J. Am. Chem. Soc.
2016, 138, 16561; (j) Bhat, V.; Wang, S.; Stoltz, B. M.; Virgil, S. C., J.
Am. Chem. Soc. 2013, 135, 16829; (k) Zijlstra, H.; León, T.; de Cózar,
A.; Guerra, C. F.; Byrom, D.; Riera, A.; Verdaguer, X.; Bickelhaupt, F. M.,
J. Am. Chem. Soc. 2013, 135, 4483; (l) Egami, H.; Matsumoto, K.;
Oguma, T.; Kunisu, T.; Katsuki, T., J. Am. Chem. Soc. 2010, 132, 13633.
(a) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N., J. Am.
Chem. Soc. 1990, 112, 2801; (b) Tyeklar, Z.; Jacobson, R. R.; Wei, N.;
Murthy, N. N.; Zubieta, J.; Karlin, K. D., J. Am. Chem. Soc. 1993, 115,
2677; (c) Chen, M. S.; White, M. C., Science 2007, 318, 783; (d)
Company, A.; Gómez, L.; Güell, M.; Ribas, X.; Luis, J. M.; Que, L.;
Costas, M., J. Am. Chem. Soc. 2007, 129, 15766.
[12] (a) Kauffmann, T.; Berg, H.; Köppelmann, E., Angew. Chem. 1970, 82,
396; (b) Kauffmann, T., Angew. Chem. Int. Ed. 1974, 13, 627.
[13] (a) Pearson, W. H.; Stoy, P., Synlett 2003, 903. (b) Pearson, W. H.; Szura,
D. P.; Postich, M. J., J. Am. Chem. Soc. 1992, 114, 1329; (c) Pearson,
W. H.; Stevens, E. P., J. Org. Chem. 1998, 63, 9812.
[14] The 2-aza-allyl anions require a high-energy HOMO to engage the high-
energy LUMOs of non-electrophilic alkenes. However, the heterocyclic
substituents in the imine lower the energy of the HOMO orbital in the 2-
aza-allyl anion, thus increasing the energy gap with the LUMO of non-
electrophilic olefins.
[15] The negative charge delocalized in Li-A is concentrated in the N-atom of
the putative lithium amide product Li-B.
[16] Unlike our previous open-shell 8e–-cycloaddition,1b this is a thermally-
allowed 6e– [3+2] reaction likely operating through
a closed-shell
mechanism (without photo-induced SET and insensitive to traces of O2).
[17] CCDC deposition number 1528080.
[18] (a) Lafaye, K.; Nicolas, L.; Guérinot, A.; Reymond, S.; Cossy, J., Org.
Lett. 2014, 16, 4972; (b) Dijkstra, H. P.; Chuchuryukin, A.; Suijkerbuijk,
B. M. J. M.; van Klink, G. P. M.; Mills, A. M.; Spek, A. L.; van Koten, G.,
Adv. Synth. Catal. 2002, 344, 771.
[2]
[19] N-Boc derivatives improve the mass recovery in the purification using
conventional normal-phase chromatography. Deprotection is achieved
using trifluoroacetic acid in quantitative yield (see SI). N-Ts derivatives
may also be accessed (3at-Ts, see SI).
[3]
[4]
(a) Chen, W.; Zhan, P.; De Clercq, E.; Liu, X., Current Pharmaceutical
Design 2012, 18, 100; (b) Vilchis-Reyes, M. A.; Hanessian, S., Proline
Methanologues: Design, Synthesis, Structural Properties, and
Applications in Medicinal Chemistry. Springer, 2015, pp 1-45.
[20] Lazareva, A.; Daugulis, O., Org. Lett. 2006, 8, 5211.
[21] (a) Newcomb, M.; Johnson, C. C.; Manek, M. B.; Varick, T. R., J. Am.
Chem. Soc. 1992, 114, 10915; (b) Newcomb, M., Tetrahedron 1993, 49,
1151.
(a) Filippone, S.; Maroto, E. E.; Martín-Domenech, Á.; Suarez, M.; Martín,
N., Nature Chem. 2009, 1, 578; (b) Maroto, E. E.; Filippone, S.; Suárez,
M.; Martínez-Álvarez, R.; de Cózar, A.; Cossío, F. P.; Martín, N., J. Am.
Chem. Soc. 2014, 136, 705.
[22] Carbanionic stepwise carbometallation-type mechanisms seem unlikely
as these may lead to β-alkoxy-elimination products with olefins like 2f,i,p,
which have never been detected.
[5]
[6]
Lim, Y.-b.; Moon, K.-S.; Lee, M., Chem. Soc. Rev. 2009, 38, 925.
Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y., Chem. Eur. J. 2006, 12, 3636.
[23] Olivo, G.; Cussó, O.; Costas, M., Chem. Asian J. 2016, 11, 3148.
This article is protected by copyright. All rights reserved.