6 Bioinorganic Chemistry of Copper, ed. K. Karlin and Z. Tyeklar,
Chapman & Hall, New York, 1993.
7 H. Decker, R. Dillinger and F. Tuczek, Angew. Chem., 2000, 112,
1656.
8 E. Solomon, Angew. Chem., Int. Ed., 2002, 40, 4570.
9 E. Spodine and J. Manzur, Coord. Chem. Rev., 1992, 119, 171.
10 H. C. Liang, M. Dahan and K. D. Karlin, Curr. Opin. Chem. Biol.,
1999, 3, 168.
11 K. D. Karlin, Science, 1993, 261, 701.
12 A. G. Blackman and W. B. Tolman, Struct. Bonding (Berlin), 1999,
97, 179.
13 S. Schindler, Eur. J. Inorg. Chem., 2000, 2311.
14 L. Que, Jr. and W. B. Tolman, Angew. Chem., Int. Ed., 2002, 41,
1114.
15 Bioinorganic Catalysis, ed. J. Reedijk and E. Bouwman, Marcel
Dekker, New York–Basel, 2nd edn., 1999.
(0.21 g, 1.1 mmol) in water (10 ml). The solution was stirred for
10 min and filtered. Blue crystals formed which were suitable
for X-ray analysis by slow evaporation of a methanol solution.
C16H20Cl2CuN4O5: calc. C 39.80, H 4.18, N 11.60; found C
39.56, H 4.38, N 11.39%.
[(H2O)(salicyl-uns-Hpenp)Cu(Cl)Cu(salicyl-uns-Hpenp)Cl]-
(ClO4)4 (4). To a solution of salicyl-uns-penp (0.17 g, 0.48
mmol) in methanol (15 ml) was added a solution of Cu(ClO4)2ؒ
6H2O (0.184 g, 0.49 mmol) in water (10 mL). The solution was
stirred for 10 min and filtered. Blue crystals formed which were
suitable for X-ray analysis by slow evaporation of a methanol
solution.
16 Y. Wang, J. DuBois, B. Hedman, K. Hodgson and T. D. P. Stack,
Science, 1998, 279, 537.
17 P. Chaudhuri, M. Hess, T. Weyermüller and K. Wieghardt,
Angew. Chem., Int. Ed., 1999, 38, 1095.
18 R. R. Jacobson, Z. Tyeklár, A. Farooq, K. D. Karlin, S. Liu and
J. Zubieta, J. Am. Chem. Soc., 1988, 110, 3690.
19 Z. Tyeklár, R. R. Jakobson, N. Wei, N. N. Murthy, J. Zubieta and
K. D. Karlin, J. Am. Chem. Soc., 1993, 115, 2677.
20 B. Lim and R. Holm, Inorg. Chem., 1998, 37, 4898.
21 K. D. Karlin, N. Wei, B. Jung, S. Kaderli, P. Niklaus and
A. D. Zuberbühler, J. Am. Chem. Soc., 1993, 115, 9506.
22 T. N. Sorrell and D. L. Jameson, Inorg. Chem., 1982, 21, 1014.
23 N. Wei, N. Murthy, Z. Tyeklar and K. Karlin, Inorg. Chem., 1994,
33, 1177.
[Cu2(uns-penp)2](ClO4)2 (5). [Cu(CH3CN)4]ClO4 (0.23 g, 0.7
mmol) was added with stirring to a solution of uns-penp
(0.17 g, 0.7 mmol) in a small amount of acetonitrile in a glove
box. Diethyl ether was added to the orange solution until a
precipitate was observed to develop. The solution was filtered
through a medium porosity frit, and the solid was washed with
diethyl ether. The yellow powder was dissolved in a small
amount of acetonitrile. Yellow crystals suitable for X-ray char-
acterization were obtained by diffusion of diethyl ether into this
solution.
X-Ray crystallographic study. Single crystals were coated
with polyfluoropolyalkylether oil and mounted on a glass fiber
or sealed in a glass capillary. Data for [Cu(uns-penp)Cl]ClO4
were collected on a Nicolet R3m/V diffractometer at 298(2) K
and for ([Cu2(uns-penp)2](ClO4)2, on a Nonius Kappa diffract-
ometer with a CCD array detector at 173(2) K (graphite-mono-
chromator). Lorentz, polarization, and empirical absorption
corrections were applied. The structures were solved by direct
methods and refined on F 2 using full-matrix least-squares tech-
niques.72 Non-hydrogen atoms were refined with anisotropic
thermal parameters. Intensity data for all other complexes were
collected on a Siemens SMART 1000 CCD-Diffractometer
with graphite monochromated Mo-Kα radiation (λ = 0.71073
Å). The exposure time was 10 s per frame collected with the
ω-scan technique (∆ω = 0.3Њ). The collected reflections were
corrected for Lorentz, polarization and absorption effects. The
structures were solved by direct methods and refined by full
matrix least squares methods on F 2.73–75
24 N. Wei, N. N. Murthy, Q. Chen, J. Zubieta and K. D. Karlin,
Inorg. Chem., 1994, 33, 1953.
25 M. Schatz, M. Becker, F. Thaler, F. Hampel, S. Schindler, R. R.
Jacobsen, Z. Tyeklár, N. N. Murthy, P. Ghosh, Q. Chen, J. Zubieta
and K. D. Karlin, Inorg. Chem., 2001, 40, 2312.
26 S. P. Foxon, O. Walter and S. Schindler, Eur. J. Inorg. Chem., 2002,
111.
27 P. C. Jain and E. C. Lingafelter, J. Am. Chem. Soc., 1967, 89, 6131.
28 M. Duggan, N. Ray, B. Hathaway, G. Tomlinson, P. Briant and
K. Plein, J. Chem. Soc., Dalton Trans., 1980, 1342.
29 F. Thaler, C. D. Hubbard, F. W. Heinemann, R. van Eldik,
S. Schindler, I. Fabián, A. M. Dittler-Klingemann, F. E. Hahn and
C. Orvig, Inorg. Chem., 1998, 37, 4022.
30 M. Becker, F. W. Heinemann and S. Schindler, Chem. Eur. J., 1999, 5,
3124.
31 S. Schindler, C. D. Hubbard and R. van Eldik, Chem. Soc. Rev.,
1998, 27, 387.
32 J. Mandel, C. Maricondi and B. Douglas, Inorg. Chem., 1988, 27,
2990.
33 G. S. Matouzenko, A. Bousseksou, S. Lecocq, P. J. van
Koningsbruggen, M. Perrin, O. Kahn and A. Collet, Inorg. Chem.,
1997, 36, 2975.
CCDC reference numbers 186857 ([Cu(uns-penp)Cl]ClO4
(1)), 186855 ([{Cu(uns-Hpenp)Cl}2Cl](ClO4)3 (2)), 186854
([Cu(acetyl-uns-penp)Cl]ClO4 (3)), 186856 ([(H2O)(salicyl-uns-
34 H. Adams, N. A. Bailey, W. D. Carlisle, D. E. Fenton and G. Rossi,
J. Chem. Soc., Dalton Trans., 1990, 1271.
Hpenp)Cu(Cl)Cu(salicyl-uns-Hpenp)Cl](ClO4)4
186634 ([Cu2(uns-penp)2](ClO4)2 (5)).
lographic data in CIF or other electronic format.
(4))
and
35 H. Adams, M. R. J. Elsegood, D. E. Fenton, S. L. Heath and
S. J. Ryan, J. Chem. Soc., Dalton Trans., 1999, 2031.
36 T.-H. Cheng, Y.-M. Wang, W.-T. Lee and G.-C. Liu, Polyhedron,
2000, 19, 2027.
37 O. Horner, E. Anxolabehere-Mallart, M.-F. Charlot, L. Tchertanov,
J. Guilhem, T. A. Mattioli, A. Boussac and J.-J. Girerd,
Inorg. Chem., 1999, 38, 1222.
38 O. Horner, M.-F. Charlot, A. Boussac, E. Anxolabehere-Mallart,
L. Tchertanov, J. Guilhem and J.-J. Girerd, Eur. J. Inorg. Chem.,
1998, 721.
39 A. J. Simaan, F. Banse, P. Mialane, A. Boussac, S. Un, T. Kargar-
Grisel, G. Bouchoux and J.-J. Girerd, Eur. J. Inorg. Chem., 1999, 993.
40 A. J. Simaan, S. Döpner, F. Banse, S. Bourcier, G. Bouchoux,
A. Boussac, P. Hildebrandt and J.-J. Girerd, Eur. J. Inorg. Chem.,
2000, 1627.
Acknowledgments
The authors gratefully acknowledge financial support from
the DFG. Simon P. Foxon acknowledges a scholarship from
the DAAD. Furthermore, they thank Prof. Rudi van Eldik
(University of Erlangen-Nürnberg) for his support of this
work.
41 I. Bernal, M. Jensen, K. B. Jensen, C. J. McKenzie, H. Toftlund and
J. P. Tuchagues, J. Chem. Soc., Dalton Trans., 1995, 3667.
42 A. Hazell, C. J. McKenzie, L. P. Nielson and S. Schindler, J. Chem.
Soc., Dalton Trans., 2002, 310.
43 M. Weitzer, M. Schatz, F. Hampel, F. W. Heinemann and
S. Schindler, J. Chem. Soc., Dalton Trans., 2002, 686.
44 M. Weitzer, S. P. Foxon, F. Hampel and S. Schindler, work in
progress.
References
1 K. D. Karlin and A. D. Zuberbühler, in Bioinorganic Catalysis,
ed. J. Reedijk and E. Bouwman, Marcel Dekker, New York–Basel,
2nd edn., 1999, p. 469.
2 S. Fox and K. D. Karlin, in Active Oxygen in Biochemistry, ed. J. S.
Valentine, C. S. Foote, A. Greenberg and J. F. Liebman, Blackie
Academic and Professional, Chapman & Hall, Glasgow, 1995,
p. 188.
45 E. Alyea, G. Ferguson, M. Jennings and Z. Xu, Tetrahedron, 1990, 9,
739.
3 W. Kaim and J. Rall, Angew. Chem., 1996, 108, 47.
46 E. Alyea, G. Ferguson, M. Jennings, L. Baolong, X. Zheng, X. You
and S. Liu, Tetrahedron, 1990, 9, 2463.
47 S. R. Collinson and D. E. Fenton, Coord. Chem. Rev., 1996, 148, 19.
4 N. Kitajima, Adv. Inorg. Chem., 1992, 39, 1.
5 N. Kitajima and Y. Moro-oka, Chem. Rev., 1994, 94, 737.
D a l t o n T r a n s . , 2 0 0 3 , 1 4 8 0 – 1 4 8 7
1486