In this work, we employed aryl tosylhydrazones as
precursors for in situ generation of diazo compounds, where
handling or accumulation of unstable intermediates can be
avoided.10 Treating the sodium salt of 1a (1 mmol) with [RuII-
(TTP)(CO)] (1 mol %) and n-Bu4NBr (10 mol %) as phase-
transfer catalyst in toluene at 60-70 °C for 48 h afforded
dihydrobenzofuran 2a in 76% isolated yield (Table 1, entry
Table 1. Ru-Catalyzed Intramolecular Carbenoid C-H
Insertion
time yield
cis/
entry
Ru catalyst
PTC
T (°C) (h)
(%) transb
Figure 1. Ruthenium porphyrins.
1
2
3
4
5
6
7
[RuII(TTP)(CO)]
[RuII(TTP)(CO)]
[RuII(TTP)(CO)]
[RuII(TTP)(CO)]
[RuII(OEP)(CO)]
n-Bu4NBr 60-70 48 76 98:2
n-Bu4NBr 110 12
83 >99%c
BnEt3NCl 60-70 48
n-Bu4NBr 110
n-Bu4NBr 60-70 48
77
86
79
79
79
98:2
98:2
98:2
98:2
98:2
2
ruthenium porphyrins react with diazo compounds to afford
ruthenium-carbene complexes,6 some of which have been
structurally characterized.5b-d Here, we report an extensive
study on ruthenium porphyrin catalyzed cyclization of aryl
tosylhydrazones to form cis-2,3-disubstituted 2,3-dihydro-
benzofurans via carbenoid C-H insertion. In the course of
this study, Zheng et al.7 communicated the use of ruthenium
porphyrin for the synthesis of (()-epi-conocarpan. Dihydro-
benzofurans (e.g., lignans and neolignans) are widespread
in nature, and they exhibit a broad range of biological
activities including anticancer effects.8 In this report, we also
describe stereoselective synthesis of cis-disubstituted â-lac-
tams9 by employing the ruthenium-catalyzed protocol.
[RuII(p-F-TPP)(CO)] n-Bu4NBr 60-70 48
[RuII(3,4,5-MeO-
TPP)(CO)]
n-Bu4NBr 60-70 48
8
9
[RuII(TDCPP)(CO)] n-Bu4NBr 60-70 48
12
10
94:6
45:55
[RuII(TMP)(CO)]
n-Bu4NBr 60-70 48
a Isolated yield. b Determined by 1H-NMR. c R,R-d2-1a-Na as substrate,
cis-d2-2a was determined by NMR analysis.
1). 1H NMR analysis revealed that cis-disubstituted product
was predominantly formed (cis/trans ) 98:2) by comparing
the integral ratios of the methyl protons of the cis (0.78 ppm)
and trans isomers (1.38 ppm).11 Using benzyl R,R-d2-alcohol
(98% D), we prepared a deuterium-labeled 1a′. Under the
Ru-catalyzed conditions, facile cyclization of 1a′ to cis-
dihydrobenzofuran 2a′ (ca. 83% yield) was achieved exclu-
sively (Table 1, entry 2). On the basis of 1H NMR and mass
spectroscopic analyses, the deuterium content was conserved
after the cyclization reaction. The NMR spectrum of 2a′
unequivocally reveals that the deuterium atom at the C3
position originates from the benzylic C-D bond. This result
suggests that the Ru-catalyzed cyclization of aryl tosyl-
hydrazones involves cleavage of the benzylic C-H bond as
the principal step.
Other phase-transfer catalysts such as BnEt3NCl are
equally effective for the Ru-catalyzed cyclization of 1a (entry
3). Toluene was found to be the solvent of choice; using
other solvents such as CH2Cl2 and THF resulted in sluggish
reaction and low product yield (<6%) with >90% of the
starting hydrazone being recovered. It is well-known that
[Rh2(CH3CO2)4] is a highly effective catalyst for the analo-
gous C-H insertions. However, in this work, when the
(4) Works by others; see, for example: (a) Smith, D. A.; Reynolds, D.
N.; Woo, L. K. J. Am. Chem. Soc. 1993, 115, 2511. (b) Galardon, E.; Maux,
P. L.; Simonneaux, G. Chem. Commun. 1997, 927. (c) Frauenkron, M.;
Berkessel, A. Tetrahedron Lett. 1997, 38, 7175. (d) Galardon, E.; Maux,
P. L.; Simonneaux, G. J. Chem. Soc., Perkin Trans. 1 1997, 2455. (e)
Galardon, E.; Roue´, S.; Maux, P. L.; Simonneaux, G. Tetrahedron Lett.
1998, 39, 2333. (f) Gross, Z.; Galili, N.; Simkhovich, L. Tetrahedron Lett.
1999, 40, 1571. (g) Galardon, E.; Maux, P. L.; Simonneaux, G.; Tetrahedron
2000, 56, 615. (h) Hamaker, C. H.; Djukic, J.-P.; Smith, D. A.; Woo, L. K.
Organometallics 2001, 20, 5189. (i) Mirafzal, G. A.; Cheng, G.; Woo, L.
K. J. Am. Chem. Soc. 2002, 124, 176.
(5) Work done by us: (a) Lo, W.-C.; Che, C.-M.; Cheng, K.-F.; Mak,
T. C.-W. J. Chem. Soc., Chem. Commun. 1997, 1205. (b) Che, C.-M.;
Huang, J.-S.; Lee, F.-W.; Li, Y.; Lai, T.-S.; Kwong, H.-L.; Teng, P.-F.;
Lee, W.-S.; Lo, W.-C.; Peng, S.-M.; Zhou, Z.-Y. J. Am. Chem. Soc. 2001,
123, 4119. (c) Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M. J. Am. Chem.
Soc. 2001, 123, 4843. (d) Zheng, S.-L.; Yu, W.-Y.; Che, C.-M. Org. Lett.
2002, 4, 889. (e) Zhang, J.-L.; Che C.-M. Org. Lett. 2002, 4, 1911. (f)
Zhou, C.-Y.; Yu, W.-Y.; Che, C.-M. Org. Lett. 2002, 4, 3235.
(6) (a) Collman, J. P.; Brothers, P. J.; McElwee-White, L.; Rose, E.;
Wright, L. J.; J. Am. Chem. Soc. 1985, 107, 4570. (b) Collman, J. P.; Rose,
E.; Venburg, G. D. J. Chem. Soc., Chem. Commun. 1993, 934. (c) Park,
S.-B.; Sakata, N.; Nishiyama, H. Chem. Eur. J. 1996, 2, 203. (d) Galardon,
E.; Maux, P. L.; Toupet, L.; Simonneaux, G. Organometallics 1998, 17,
565. (e) Klose, A.; Solari, E.; Floriani, C.; Geremia, S.; Randaccio, L.
Angew. Chem. 1998, 110, 155; Klose, A.; Solari, E.; Floriani, C.; Geremia,
S.; Randaccio, L. Angew. Chem., Int. Ed. 1998, 37, 148.
(9) For an alternative approach for highly cis-selective â-lactam synthesis
using [2 + 2] cycloaddition, see: Taggi, A. E.; Hafez, A. M.; Wack, H.;
Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 6626 and
references therein.
(10) Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. Org. Lett. 2001, 3,
2785.
(7) Zheng, S.-L.; Yu, W.-Y.; Xu, M.-X.; Che, C.-M. Tetrahedron Lett.
2003, 44, 1445.
(8) (a) MacRae, W. D.; Towers, G. H. N. Phytochemistry 1984, 23, 1207.
(b) Ward, R. S. Nat. Prod. Rep. 1995, 183. (c) Ayers, A. C.; Loike, J. K.
Lignans: Chemical, Biological and Clinical Properties; Cambridge Uni-
versity Press: Cambridge, 1990.
(11) Snider, B. B.; Han, L.; Xie, C. J. Org. Chem. 1997, 62, 6978.
2536
Org. Lett., Vol. 5, No. 14, 2003