10.1002/adsc.201701640
Advanced Synthesis & Catalysis
Experimental Section
4390; f) H. Zhang, E. C. Yu, S. Torker, R. R. Schrock,
A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 16493.
General procedure for the preparation of ɑ,β-
unsaturated ester 3: In a 25-mL flask was charged with
phosphorus ylide 1 (0.3 mmol), alkenyl boronic acid 2 (0.9
mmol, 3.0 equiv.), Cu(OAc)2 (0.15 mmol, 0.5 equiv.) and
Na2SO4 (10 equiv.) in an air atmosphere. Then, DCE (3.0
mL) and pyridine (1.5 mmol, 5.0 equiv.) were added via
syringe. The reaction flask was then capped with a septum
pierced with a ventilation needle and the reaction mixture
was stirred vigorously at 30 °C for 8−24 h until the
phosphorus ylide 1 disappeared (monitored by TLC). At
this time, the reaction was quenched by H2O (10 mL) and
extracted with DCM (3 × 10 mL). Then, dried over with
Na2SO4 and filtered. The solvent was removed under
reduced pressure and the crude product was purified by
flash chromatography (the crude residue was dry loaded on
silica gel, 1/100 to 1/20, ethyl acetate/petroleum ether) to
give ɑ,β-unsaturated ester 3.
[3] a) B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89,
863; b) P. F. Schuda, C. B. Ebner, S. J. Potlock,
Synthesis 1987, 12, 1055; c) J. Dambacher, W. Zhao, A.
El-Batta, R. Anness, C. Jiang, M. Bergdahl,
Tetrahedron Lett. 2005, 46, 4473.
[4] a) R. N. Nair, T. D. Bannister, J. Org. Chem. 2014, 79,
1467; b) R. V. Hoffman, T. Patonay, N. K. Nayyar, J.
Tao, Tetrahedron Lett. 1996, 37, 2381; c) J. P. Sonye,
K. Koide, J. Org. Chem. 2006, 71, 6254.
[5] R. Antonioletti, M. D’Auria, A. D. Mico, G. Piancatelli,
A. Scettri, Synthesis 1984, 3, 280.
[6] S. Raymond, J. Am. Chem. Soc. 1950, 72, 3296.
General procedure for the preparation of ɑ,β-
unsaturated-γ-keto ester 4: In a 25-mL flask was charged
with phosphorus ylide 1 (0.3 mmol), alkenyl boronic acid 2
(0.9 mmol, 3.0 equiv.), Cu(OAc)2 (0.06 mmol, 0.2 equiv.)
in an air atmosphere. Then, CH3CN (3.0 mL), pyridine (1.5
mmol, 5.0 equiv.) and H2O (0.027 mL, 1.5 mmol, 5.0
equiv.) was added via syringe. The reaction flask was then
capped with a septum pierced with a ventilation needle and
the reaction mixture was stirred vigorously at 30 °C for
[7] J. E. McMurry, L. C. Blaszczak, J. Org. Chem. 1974,
39, 2217.
[8] D. R. Matthew, K. Z. Charles, J. Org. Chem. 2003, 68,
4535.
[9] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457;
b) H. Prokopcová, C. O. Kappe, Angew. Chem. Int. Ed.
2009, 48, 2276; Angew. Chem. 2009, 121, 2312; c) A.
Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722; Angew.
Chem. 2009, 123, 6754; d) Boronic Acids, Ed.: D. G.
Hall, Wiley-VCH, Weinheim, 2011, Vol. 2, pp. 1-677.
8−24
h until the phosphorus ylide 1 disappeared
(monitored by TLC). At this time, the reaction was
quenched by H2O (10 mL) and extracted with DCM (3 ×
10 mL). Then, dried over with Na2SO4 and filtered. The
solvent was removed under reduced pressure and the crude
product was purified by flash chromatography (the crude
residue was dry loaded on silica gel, 1/100 to 1/20, ethyl
acetate/petroleum ether) to give compound 4.
[10] Recent reviews for oxidative coupling reactions, see: a)
S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003,
42, 5400; Angew. Chem. 2003, 115, 5558; b) R. Martin,
S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461; c) C.
Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111,
1780; d) C. Liu, D. Liu, A. Lei, Acc. Chem. Res. 2014,
47, 3459; e) W. Zi, Z. Zuo, D. Ma, Acc. Chem. Res.
2015, 48, 702.
Acknowledgements
This work was supported by National Natural Science
Foundation of China (21562005, 21602037, 21462008), Natural
Science Foundation of Guangxi (2015GXNSFCA139001,
2016GXNSFFA380005), State Key Laboratory for Chemistry and
Molecular Engineering of Medicinal Resources, Ministry of
Science and Technology of China (CMEMR2015-A05), and
“Oversea 100 Talents Program” of Guangxi Education. We also
thank Dr. Simon Partridge, from Liwen Bianji, Edanz Editing
[11] Selected examples for coupling of O- or N-atoms with
alkenyl boronic acids, see: a) R. E. Shade, A. M. Hyde,
J. C. Olsen, C. A. Merlic, J. Am. Chem. Soc. 2010, 132,
1202; b) D. J. Winternherimer, C. A. Merlic, Org. Lett.
2010, 12, 2508; c) D. G. Chan, D. J. Winternherimer, C.
A. Merlic, Org. Lett. 2011, 13, 2778; d) D.-L. Mo, D.
A. Wink, L. L. Anderson, Org. Lett. 2012, 14, 5180; e)
A. S. Patil, D.-L. Mo, H.-Y. Wang, D. S. Muller, L. L.
Anderson, Angew. Chem. Int. Ed. 2012, 51, 7799;
Angew. Chem. 2012, 124, 7919; f) D. Kontokosta, D. S.
Mueller, H.-Y. Wang, L. L. Anderson, Org. Lett. 2013,
15, 4830; g) D. Kontokosta, D. S. Mueller, D.-L. Mo,
W. H. Pace, R. A. Simpson, L. L. Anderson, Beilstein J.
Org. Chem. 2015, 11, 2097; h) J. Ohata, M. B. Minus,
M. E. Abernathy, Z. T. Ball, J. Am. Chem. Soc. 2016,
138, 7472; i) T. W. Reidl, J. Son, D. A. Wink, L. L.
Anderson, Angew. Chem. Int. Ed. 2017, 56, 11579;
Angew. Chem. 2017, 129, 11737.
[1] a) R. Chinchilla, C. Nájera, Chem. Rev. 2000, 100,
1891; b) J. Wang, A. Ma, D. Ma, Org. Lett. 2008, 10,
5425; c) Y. Cai, X. Liu, J. Jiang, W. Chen, L. Lin, X.
Feng, J. Am. Chem. Soc. 2011, 133, 5636; d) F. Yin, A.
Garifullina, F. Tanaka, Org. Biomol. Chem. 2017, 15,
6089; e) J. Wang, C. Liu, J. Yuan, A. Lei, Angew.
Chem. Int. Ed. 2013, 52, 2256; Angew. Chem. 2013,
125, 2312.
[2] a) J. Gebauer, S. Blechert, J. Org. Chem. 2006, 71,
2021; b) S.-M. Paek, S.-Y. Seo, S.-H. Kim, J.-W. Jung,
Y.-S. Lee, J.-K. Jung, Y.-G. Suh, Org. Lett. 2005, 7,
3159; c) J. Sekiguchi, H. Kuroda, Y. Yamada, H.
Okada, Tetrahedron Lett. 1985, 26, 2341; d) S.
Takamatsu, Y. P. Kim, M. Hayashi, H. Hiraoka, M.
Natori, K. Komiyama, S. Omura, J. Antibiot. 1996, 49,
95; e) W. Lin, C. K. Zercher, J. Org. Chem. 2007, 72,
[12] a) P. J. Moon, S. K. Yin, R. J. Lundgren, J. Am. Chem.
Soc. 2016, 138, 13826; b) L. Chu, F.-L. Qing, Org. Lett.
2010, 12, 5060; c) J. Xu, B. Xiao, C.-Q. Xie, D.-F. Luo,
L. Liu, Y. Fu, Angew. Chem. Int. Ed. 2012, 51, 12551;
Angew. Chem. 2012, 124, 12719; d) T. D. Senecal, A.
T. Parsons, S. L. Buchwald, J. Org. Chem. 2011, 76,
1174.
6
This article is protected by copyright. All rights reserved.